beta.update.net {LassoNet} | R Documentation |
Updates \beta
coefficients.
Description
This function updates \beta
for given penalty parameters.
Usage
beta.update.net(x,y,beta,lambda1,lambda2,M1,n.iter,iscpp,tol)
Arguments
x |
input data matrix of size |
y |
response vector or size |
beta |
initial value for |
lambda1 |
lasso penalty parameter |
lambda2 |
network penalty parameter |
M1 |
penalty matrix |
n.iter |
maximum number of iterations for |
iscpp |
binary choice for using cpp function in coordinate updates; 1 - use C++ (default), 0 - use R |
tol |
convergence tolerance level; default - 1e-6 |
Details
Updates the coefficient vector \beta
given the data and penalty parameters \lambda
1 and \lambda
2.
Convergence criterion is defined as \sum_{i=1}^p |\beta_{i,j} - \beta_{i,j-1}| \leq
to.
Value
beta |
updated |
convergence |
binary variable; 1 - yes |
steps |
number of steps until convergence |
Author(s)
Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>
References
Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>
Examples
p<-200
n<-100
beta.0=array(1,c(p,1))
x<-matrix(rnorm(n*p),n,p)
y<-rnorm(n,mean=0,sd=1)
lambda1<-1
lambda2<-1
M1<-diag(p)
updates<-beta.update.net(x, y, beta.0, lambda1, lambda2, M1)