| lasso.net.grid {LassoNet} | R Documentation |
Estimates coefficients and connection signs over the grid of values of penalty parameters \lambda1 and \lambda2.
Description
Fits network regressions over the grid of values of penalty parameters \lambda1 and \lambda2, stores connection signs, number of iterations until convergence and convergence outcome.
Usage
lasso.net.grid(x,y ,beta.0,lambda1,lambda2,M1,m.iter,n.iter,iscpp=TRUE,tol,alt.num)
Arguments
x |
|
y |
response vector or size |
beta.0 |
initial value for |
lambda1 |
lasso penalty coefficient |
lambda2 |
network penalty coefficient |
M1 |
penalty matrix |
m.iter |
maximum number of iterations for sign matrix updating; default - 100 |
n.iter |
maximum number of iterations for |
iscpp |
binary choice for using cpp function in coordinate updates; 1 - use C++ (default), 0 - use R |
tol |
convergence in |
alt.num |
alt.num remaining iterataions are stored; default - 12 |
Details
Fits network regression for the grid values of \lambda1 and \lambda2 using warm starts.
Value
beta |
matrix of |
mse |
mean squared error value |
M |
array of connection signs. |
iterations |
matrix with stored number of steps for sign matrix to converge |
update.steps |
matrix with stored number of steps for |
convergence.in.M |
matrix with stored values for convergence in sign matrix |
convergence.in.grid |
matrix with stored values for convergence in |
xi.conv |
array with stored connection signs changes in each iteration |
beta.alt |
array of coefficient vectors in case connection signs alternate |
Author(s)
Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>
References
Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>
Examples
p=200
n=100
beta.0=array(1,c(p,1))
x=matrix(rnorm(n*p),n,p)
y=rnorm(n,mean=0,sd=1)
lambda1=c(0,1)
lambda2=c(0,1)
M1=diag(p)
lasso.net.grid(x, y, beta.0, lambda1, lambda2, M1)