| lasso.net.fixed {LassoNet} | R Documentation |
Estimates coefficients over the grid values of penalty parameters.
Description
See lasso.net.grid
Usage
lasso.net.fixed(x,y,beta.0,lambda1,lambda2,M1,n.iter,iscpp,tol)
Arguments
x |
|
y |
response vector or size |
beta.0 |
initial value for |
lambda1 |
lasso penalty coefficient |
lambda2 |
network penalty coefficient |
M1 |
penalty matrix |
n.iter |
maximum number of iterations for |
iscpp |
binary choice for using cpp function in coordinate updates; 1 - use C++ (default), 0 - use R. |
tol |
convergence in |
Details
Function loops through the grid of values of penalty parameters \lambda1 and \lambda2 until convergence is reached. Warm starts are stored for each iterator. The warm starts are stored once the coordinate updating converges.
Value
beta |
Matrix of |
mse |
Mean squared error value |
iterations |
matrix with stored number of steps for sign matrix to converge |
update.steps |
matrix with stored number of steps for |
convergence.in.grid |
matrix with stored values for convergence in |
Author(s)
Maintainer: Jonas Striaukas <jonas.striaukas@gmail.com>
References
Weber, M., Striaukas, J., Schumacher, M., Binder, H. "Network-Constrained Covariate Coefficient and Connection Sign Estimation" (2018) <doi:10.2139/ssrn.3211163>
Examples
p=200
n=100
beta.0=array(1,c(p,1))
x=matrix(rnorm(n*p),n,p)
y=rnorm(n,mean=0,sd=1)
lambda1=c(0,1)
lambda2=c(0,1)
M1=diag(p)
lasso.net.fixed(x, y, beta.0, lambda1, lambda2, M1)