timeseries1D {Langevin} | R Documentation |
Generate a 1D Langevin process
Description
timeseries1D
generates a one-dimensional Langevin process using a
simple Euler integration. The drift function is a cubic polynomial, the
diffusion function a quadratic.
Usage
timeseries1D(
N,
startpoint = 0,
d13 = 0,
d12 = 0,
d11 = -1,
d10 = 0,
d22 = 0,
d21 = 0,
d20 = 1,
sf = 1000,
dt = 0
)
Arguments
N |
a scalar denoting the length of the time-series to generate. |
startpoint |
a scalar denoting the starting point of the time series. |
d13 , d12 , d11 , d10 |
scalars denoting the coefficients for the drift polynomial. |
d22 , d21 , d20 |
scalars denoting the coefficients for the diffusion polynomial. |
sf |
a scalar denoting the sampling frequency. |
dt |
a scalar denoting the maximal time step of integration. Default
|
Value
timeseries1D
returns a time-series object of length
N
with the generated time-series.
Author(s)
Philip Rinn
See Also
Examples
# Generate standardized Ornstein-Uhlenbeck-Process (d11=-1, d20=1)
# with integration time step 0.01 and sampling frequency 1
s <- timeseries1D(N=1e4, sf=1, dt=0.01);
t <- 1:1e4;
plot(t, s, t="l", main=paste("mean:", mean(s), " var:", var(s)));
[Package Langevin version 1.3.2 Index]