| ks_test_t {LambertW} | R Documentation | 
One-sample Kolmogorov-Smirnov test for student-t distribution
Description
Performs a two-sided KS test for H_0: X \sim t_{\nu} with c,
scale s, and degrees of freedom \nu. If parameters are not
specified, the MLE given the data will be used (see
fitdistr).
For estimated parameters of the t-distribution the p-values are incorrect and
should be adjusted. See ks.test and the references
therein (Durbin (1973)).  As a more practical approach consider
bootstrapping and estimating the p-value empirically.
Usage
ks_test_t(x, param = NULL)
Arguments
| x | a numeric vector of data values. | 
| param | 3-dimensional named vector  | 
Value
A list of class "htest" containing:
| statistic | the value of the Kolomogorv-Smirnov statistic. | 
| p.value | the p-value for the test. | 
| alternative | a character string describing the alternative hypothesis. | 
| method | the character string "One-sample Kolmogorov-Smirnov test student-t" plus rounded parameter values. | 
| data.name | a character string giving the name(s) of the data. | 
See Also
Examples
set.seed(1021)
beta.true <- c(location = 0, scale = 1, df = 4)
xx <- rt(n = 1000, df = beta.true['df'])
ks_test_t(xx)
ks_test_t(xx, beta.true)