| beta-utils {LambertW} | R Documentation | 
Utilities for parameter vector beta of the input distribution
Description
The parameter \boldsymbol \beta specifies the input distribution
X \sim F_X(x \mid \boldsymbol \beta).
beta2tau converts \boldsymbol \beta to the transformation vector
\tau = (\mu_x, \sigma_x, \gamma = 0, \alpha = 1, \delta = 0), which
defines the Lambert W\times F random variable mapping from X
to Y (see tau-utils). Parameters \mu_x and
\sigma_x of X in general depend on \boldsymbol \beta
(and may not even exist for use.mean.variance = TRUE; in this case
beta2tau will throw an error).
check_beta checks if \boldsymbol \beta defines a
valid distribution, e.g., for normal distribution 'sigma' must be
positive.
estimate_beta estimates \boldsymbol \beta for a given
F_X using MLE or methods of moments.  Closed form solutions
are used if they exist; otherwise the MLE is obtained numerically using 
fitdistr.
get_beta_names returns (typical) names for each component of
\boldsymbol \beta.
Depending on the distribution 
\boldsymbol \beta has different length and names: e.g., 
for a "normal" distribution beta is of length 
2 ("mu", "sigma"); for an "exp"onential 
distribution beta is a scalar (rate "lambda").
Usage
beta2tau(beta, distname, use.mean.variance = TRUE)
check_beta(beta, distname)
estimate_beta(x, distname)
get_beta_names(distname)
Arguments
| beta | numeric; vector  | 
| distname | character; name of input distribution; see
 | 
| use.mean.variance | logical; if  | 
| x | a numeric vector of real values (the input data). | 
Details
estimate_beta does not do any data transformation as part of the
Lambert W\times F input/output framework.  For an initial estimate
of \theta for Lambert W\times F distributions see
get_initial_theta and get_initial_tau.
A quick initial estimate of \theta is obtained by first finding the
(approximate) input \widehat{\boldsymbol x}_{\widehat{\theta}} by
IGMM, and then getting the MLE of \boldsymbol \beta
for this input data \widehat{\boldsymbol x}_{\widehat{\theta}} \sim
    F_X(x \mid \boldsymbol \beta) (usually using
fitdistr).
Value
beta2tau returns a numeric vector, which is \tau =
    \tau(\boldsymbol \beta) implied by beta and distname.
check_beta throws an error if \boldsymbol \beta is not
appropriate for the given distribution; e.g., if it has too many values
or if they are not within proper bounds (e.g., beta['sigma'] of a
"normal" distribution must be positive).
estimate_beta returns a named vector with estimates for
\boldsymbol \beta given x.
get_beta_names returns a vector of characters.
See Also
Examples
# By default: delta = gamma = 0 and alpha = 1
beta2tau(c(1, 1), distname = "normal") 
## Not run: 
  beta2tau(c(1, 4, 1), distname = "t")
## End(Not run)
beta2tau(c(1, 4, 1), distname = "t", use.mean.variance = FALSE)
beta2tau(c(1, 4, 3), distname = "t") # no problem
## Not run: 
check_beta(beta = c(1, 1, -1), distname = "normal")
## End(Not run)
set.seed(124)
xx <- rnorm(100)^2
estimate_beta(xx, "exp")
estimate_beta(xx, "chisq")