metab.ols {LakeMetabolizer} | R Documentation |
Metabolism model based on a ordinary least squares parameter estimation framework.
Description
This function runs the ordinary least squares metabolism model on the supplied gas concentration and other supporting data. This is a common approach that allows for the concurrent estimation of metabolism paramters from a timeseries.
Usage
metab.ols(do.obs, do.sat, k.gas, z.mix, irr, wtr, ...)
Arguments
do.obs |
Vector of dissolved oxygen concentration observations, mg L^-1 |
do.sat |
Vector of dissolved oxygen saturation values based on water temperature. Calculate using o2.at.sat |
k.gas |
Vector of kGAS values calculated from any of the gas flux models (e.g., k.cole) and converted to kGAS using k600.2.kGAS |
z.mix |
Vector of mixed-layer depths in meters. To calculate, see ts.meta.depths |
irr |
Vector of photosynthetically active radiation in |
wtr |
Vector of water temperatures in |
... |
additional arguments; currently "datetime" is the only recognized argument passed through |
Value
A data.frame with columns corresponding to components of metabolism
- GPP
numeric estimate of Gross Primary Production,
mg O_2 L^{-1} d^{-1}
- R
numeric estimate of Respiration,
mg O_2 L^{-1} d^{-1}
- NEP
numeric estimate of Net Ecosystem production,
mg O_2 L^{-1} d^{-1}
Author(s)
Luke A Winslow, Ryan Batt, GLEON Fellows
See Also
metab, metab.bookkeep, metab.mle, metab.kalman, metab.bayesian,
Examples
library(rLakeAnalyzer)
doobs = load.ts(system.file('extdata',
'sparkling.doobs', package="LakeMetabolizer"))
wtr = load.ts(system.file('extdata',
'sparkling.wtr', package="LakeMetabolizer"))
wnd = load.ts(system.file('extdata',
'sparkling.wnd', package="LakeMetabolizer"))
irr = load.ts(system.file('extdata',
'sparkling.par', package="LakeMetabolizer"))
#Subset a day
mod.date = as.POSIXct('2009-07-08')
doobs = doobs[trunc(doobs$datetime, 'day') == mod.date, ]
wtr = wtr[trunc(wtr$datetime, 'day') == mod.date, ]
wnd = wnd[trunc(wnd$datetime, 'day') == mod.date, ]
irr = irr[trunc(irr$datetime, 'day') == mod.date, ]
z.mix = ts.thermo.depth(wtr)
k600 = k.cole.base(wnd[,2])
k.gas = k600.2.kGAS.base(k600, wtr[,3], 'O2')
do.sat = o2.at.sat.base(wtr[,3], altitude=300)
metab.ols(doobs[,2], do.sat, k.gas, z.mix[,2], irr[,2], wtr[,3])