metab.kalman {LakeMetabolizer} | R Documentation |
Metabolism calculated from parameters estimated using a Kalman filter
Description
A state space model accounting for process and observation error, with the maximum likelihood of parameteres estimated using a Kalman filter. Also provides a smoothed time series of oxygen concentration.
Usage
metab.kalman(do.obs, do.sat, k.gas, z.mix, irr, wtr, ...)
Arguments
do.obs |
Vector of dissovled oxygen concentration observations, |
do.sat |
Vector of dissolved oxygen saturation values based on water temperature. Calculate using o2.at.sat |
k.gas |
Vector of kGAS values calculated from any of the gas flux models (e.g., k.cole) and converted to kGAS using k600.2.kGAS |
z.mix |
Vector of mixed-layer depths in meters. To calculate, see ts.meta.depths |
irr |
Vector of photosynthetically active radiation in |
wtr |
Vector of water temperatures in |
... |
additional arguments; currently "datetime" is the only recognized argument passed through |
Details
The model has four parameters, c_1, c_2, Q, H
, and consists of equations involving the prediction of upcoming state conditional on information of the previous state (a_{t|t-1}
, P_{t|t-1}
), as well as updates of those predictions that are conditional upon information of the current state (a_{t|t}
, P_{t|t}
). a
is the
v=k.gas/z.mix
a_t = c_1*irr_{t-1} + c_2*log_e(wtr_{t-1}) + v_{t-1}*do.sat_{t-1}
beta = e^{-v}
do.obs_t = a_t/v_{t-1} + -e^{-v_{t-1}}*a_t/v_{t-1} + beta_{t-1}*do.obs_{t-1} + epsilon_t
The above model is used during model fitting, but if gas flux is not integrated between time steps, those equations simplify to the following:
F_{t-1} = k.gas_{t-1}*(do.sat_{t-1} - do.obs_{t-1})/z.mix_{t-1}
do.obs_t=do.obs_{t-1}+c_1*irr_{t-1}+c_2*log_e(wtr_{t-1}) + F_{t-1} + epsilon_t
The parameters are fit using maximum likelihood, and the optimization (minimization of the negative log likelihood function) is performed by optim
using default settings.
GPP is then calculated as mean(c1*irr, na.rm=TRUE)*freq
, where freq
is the number of observations per day, as estimated from the typical size between time steps. Thus, generally freq==length(do.obs)
.
Similarly, R is calculated as mean(c2*log(wtr), na.rm=TRUE)*freq
.
NEP is the sum of GPP and R.
Value
A data.frame with columns corresponding to components of metabolism
- GPP
numeric estimate of Gross Primary Production,
mg O_2 L^{-1} d^{-1}
- R
numeric estimate of Respiration,
mg O_2 L^{-1} d^{-1}
- NEP
numeric estimate of Net Ecosystem production,
mg O_2 L^{-1} d^{-1}
Use attributes to access more model output:
smoothDO |
smoothed time series of oxygen concentration ( |
params |
parameters estimated by the Kalman filter ( |
Note
If observation error is substantial, consider applying a Kalman filter to the water temperature time series by supplying
wtr
as the output from temp.kalman
Author(s)
Ryan Batt, Luke A. Winslow
References
Batt, Ryan D. and Stephen R. Carpenter. 2012. Free-water lake metabolism: addressing noisy time series with a Kalman filter. Limnology and Oceanography: Methods 10: 20-30. doi: 10.4319/lom.2012.10.20
See Also
temp.kalman, watts.in, metab, metab.bookkeep, metab.ols, metab.mle, metab.bayesian
Examples
library(rLakeAnalyzer)
doobs <- load.ts(system.file('extdata',
'sparkling.doobs', package="LakeMetabolizer"))
wtr <- load.ts(system.file('extdata',
'sparkling.wtr', package="LakeMetabolizer"))
wnd <- load.ts(system.file('extdata',
'sparkling.wnd', package="LakeMetabolizer"))
irr <- load.ts(system.file('extdata',
'sparkling.par', package="LakeMetabolizer"))
#Subset a day
Sys.setenv(TZ='GMT')
mod.date <- as.POSIXct('2009-07-08', 'GMT')
doobs <- doobs[trunc(doobs$datetime, 'day') == mod.date, ]
wtr <- wtr[trunc(wtr$datetime, 'day') == mod.date, ]
wnd <- wnd[trunc(wnd$datetime, 'day') == mod.date, ]
irr <- irr[trunc(irr$datetime, 'day') == mod.date, ]
k600 <- k.cole.base(wnd[,2])
k.gas <- k600.2.kGAS.base(k600, wtr[,3], 'O2')
do.sat <- o2.at.sat.base(wtr[,3], altitude=300)
metab.kalman(irr=irr[,2], z.mix=rep(1, length(k.gas)),
do.sat=do.sat, wtr=wtr[,2],
k.gas=k.gas, do.obs=doobs[,2])