trans.matrix {LTCDM} | R Documentation |
Compute transition matrix
Description
Function to compute transition matrix using classification results
Usage
trans.matrix(X)
Arguments
X |
a matrix containing the initial state (first column) and the transition state (second column). |
Value
a 2 \times
2 matrix where rows represent initial states (0 and 1) and the columns represent transition states (0 and 1).
Examples
initial_states <- c(1, 2, 1, 2)
final_states <- c(1, 1, 2, 2)
transition_matrix <- trans.matrix(data.frame(initial_states, final_states))
print(transition_matrix)
## Not run:
# transition probabilities (corrected and updated)
t = 2 # the number of time points
K = ncol(Q) # the number of attributes
Z = dat1[, c(1,2)]
z_t1 = cbind(1, Z$gender) # Covariate at time 1
z_t2 = cbind(1, Z$gender, Z$intervention, apply(Z,1,prod)) # Covariates at time 2
beta = step3.output$beta
gamma_01 = step3.output$gamma_01
gamma_10 = step3.output$gamma_10
updated.class <- update.class(cep = cep, K = K, t = t, z_t1 = z_t1,
z_t2 = z_t2, beta = beta, gamma_01 = gamma_01, gamma_10 = gamma_10)
C.eap.t1 = updated.class$cor.profile[[1]]
C.eap.t2 = updated.class$cor.profile[[2]]
C.eap.t1t2 <- cbind(z_t2, C.eap.t1, C.eap.t2)
t.A1.c = trans.matrix(as.matrix(C.eap.t1t2[,c("A1_t1","A1_t2")]))
t.A1.c
## End(Not run)
[Package LTCDM version 1.0.0 Index]