LTAR {LTAR} | R Documentation |
Tensor Autoregression (TAR) Model
Description
Fits a Tensor Autoregression (TAR) Model to historical 3D tensor data and returns the coefficient tensor (A) and the constant matrix (C).
\mathbf{A}=[A_1 | A_2 | \ldots | A_p], \mathbf{C}
Usage
LTAR(p,tnsr,type = c("const", "trend", "both", "none"),season=NULL)
Arguments
p |
: Number of lags |
tnsr |
: A 3D tensor |
type |
:Type of deterministic regressors to include. |
season |
: Inclusion of centered seasonal dummy variables (integer value of frequency). |
Value
The coefficient tensor
\mathbf{A}=[A_1 | A_2 | \ldots | A_p]
and the constant matrix
C
for the LTAR model:
\mathbf{y}_t = A_1\mathbf{y}_{t-1}+\ldots+A_p\mathbf{y}_p+CD_t+\mathbf{u}_t.
Author(s)
Kyle Caudle
Randy Hoover
Jackson Cates
References
Cates, J., Hoover, R. C., Caudle, K., Kopp, R., & Ozdemir, C. (2021, December). Transform-Based Tensor Auto Regression for Multilinear Time Series Forecasting. In 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 461-466). IEEE.
Examples
require(rTensor)
data(tensor)
tnsr <- as.tensor(tensor)
# an LTAR(1) model with trend
model <- LTAR(p=1,tnsr,type="trend")