fista.LpS {LSVAR} | R Documentation |
A function to solve low rank plus sparse model estimation using FISTA algorithm
Description
A function to solve low rank plus sparse model estimation
Usage
fista.LpS(
data,
lambda,
mu,
alpha_L = 0.25,
niter = 100,
backtracking = TRUE,
x.true = NULL
)
Arguments
data |
A numeric dataset with size of n by p |
lambda |
A positive numeric value, indicating the tuning parameter for sparse component |
mu |
A positive numeric value, indicating the tuning parameter for low rank component |
alpha_L |
The constraint coefficient of low rank component, default is 0.25 |
niter |
The maximum number of iterations required for FISTA |
backtracking |
A boolean argument, indicating that use backtracking in the FISTA |
x.true |
A p by p matrix, the true model parameter. Only available for simulation. |
Value
A S3 object of class LSVAR
, including
- est_phi
estimated model parameter
- sparse.comp
Estimated sparse component
- lr.comp
Estimated low-rank component
- obj.val
Values of objective function
- rel.err
Relative errors compared with the true model parameters if available
Examples
n <- 300
p <- 20
try <- testVAR(n, p, struct = "LS", signal = 0.75, rank = 2,
singular_vals = c(1, 0.8))
data <- as.matrix(try$series)
lambda <- 0.1; mu <- 1
fit <- fista.LpS(data, lambda = lambda, mu = mu, x.true = try$model_param)
summary(fit, threshold = 0.2)
[Package LSVAR version 1.2 Index]