spectral.density {LSTS} | R Documentation |
Spectral Density
Description
Returns theoretical spectral density evaluated in ARMA and ARFIMA processes.
Usage
spectral.density(ar = numeric(), ma = numeric(), d = 0, sd = 1, lambda = NULL)
Arguments
ar |
(type: numeric) AR vector. If the time serie doesn't have AR term then omit it. For more details see the examples. |
ma |
(type: numeric) MA vector. If the time serie doesn't have MA term then omit it. For more details see the examples. |
d |
(type: numeric) Long-memory parameter. If d is zero, then the process is ARMA(p,q). |
sd |
(type: numeric) Noise scale factor, by default is 1. |
lambda |
(type: numeric) |
Details
The spectral density of an ARFIMA(p,d,q) processes is
f(\lambda) = \frac{\sigma^2}{2\pi} \cdot \bigg(2\,
\sin(\lambda/2)\bigg)^{-2d} \cdot
\frac{\bigg|\theta\bigg(\exp\bigg(-i\lambda\bigg)\bigg)\bigg|^2}
{\bigg|\phi\bigg(\exp\bigg(-i\lambda\bigg)\bigg)\bigg|^2}
With -\pi \le \lambda \le \pi
and -1 < d < 1/2
. |x|
is the
Mod
of x
. LSTS_sd
returns the
values corresponding to f(\lambda)
. When d
is zero, the spectral
density corresponds to an ARMA(p,q).
Value
An unnamed vector of numeric class.
References
For more information on theoretical foundations and estimation methods see Brockwell PJ, Davis RA, Calder MV (2002). Introduction to time series and forecasting, volume 2. Springer. Palma W (2007). Long-memory time series: theory and methods, volume 662. John Wiley \& Sons.
Examples
# Spectral Density AR(1)
require(ggplot2)
f <- spectral.density(ar = 0.5, lambda = malleco)
ggplot(data.frame(x = malleco, y = f)) +
geom_line(aes(x = as.numeric(x), y = as.numeric(y))) +
labs(x = "Frequency", y = "Spectral Density") +
theme_minimal()