Nullspace {LSE} | R Documentation |
Nullspace method for LSE problem.
Description
Null Space method allows to give an analytic solution for equality constrained least squares problem (LSE). Requires pracma library.
Usage
Nullspace(A,C,b,d)
Arguments
A |
Design matrix, m rows and n columns. |
C |
Constraint matrix, p rows and n columns. |
b |
Response vector for A, Ax=b, m rows and 1 column. |
d |
Response vector for C, Cx=d, p rows and 1 column. |
Details
Null Space method gives a numerical vector as the solution of a least squares problem (Ax=b), using an unconstrained problem equivalent to the LSE proposed, this method an be applied when impose some restrictions (additional information, extramuestral information or a priori information) that lead to another linear equality system (Cx=d). See significance constraint (x=0) or inclusion restriction (x+y=1), etc.
Value
Numerical vector for a LSE problem.
Author(s)
Sergio Andrés Cabrera Miranda Statician sergio05acm@gmail.com
References
Lawson, C. L., & Hanson, R. J. (1974). Linear least squares with linear inequality constraints. Solving least squares problems, 158-173.
Van Benthem, M. H., Keenan, M. R., & Haaland, D. M. (2002). Application of equality constraints on variables during alternating least squares procedures. Journal of Chemometrics: A Journal of the Chemometrics Society, 16(12), 613-622.
Examples
A = matrix(runif(50,-1,1),10,5)
C = matrix(runif(20,-1,1),4,5)
b = matrix(runif(10,-1,1),10,1)
d = matrix(runif(4,-1,1),4,1)
Nullspace(A,C,b,d)