GQR {LSE} | R Documentation |
Generalized QR Factorization
Description
This code provides a simultaneous orthogonal factorization for two matrices A and B. This code requires pracma library.
Usage
GQR(x,y)
Arguments
x |
Numerical matrix with m rows and n columns. |
y |
Numerical matrix with p rows and n columns. |
Details
Given two matrices, with the same number of rows, this algorithm provides a single factorization, such that A=QR and (Q^T)B=WS.
Value
Q |
Orthogonal matrix for A |
R |
Trapezoidal matrix for A |
W |
Orthogonal matrix for (Q^T)B |
S |
Trapezoidal matrix for (Q^T)B |
Author(s)
Sergio Andrés Cabrera Miranda Statician sergio05acm@gmail.com
References
Cabrera Miranda, S. A., & Triana Laverde, J. G. (2021). El problema de los mínimos cuadrados con restricciones de igualdad mediante la factorización QR generalizada. Selecciones Matemáticas, 8(02), 437-443. (English Article).
Anderson, E., Bai, Z., & Dongarra, J. (1992). Generalized QR factorization and its applications. Linear Algebra and its Applications, 162, 243-271.
Examples
A = matrix(c(1,1,1,1,3,1,1,-1,1,1,1,1),4,3,byrow=TRUE)
C = matrix(c(1,1,1,1,1,-1),2,3,byrow=TRUE)
GQR(t(A),t(C))