randomEffectsMatrix {LPower} | R Documentation |
Calculates the variance covariance matrix for a multivariate normal vector when there are random effects.
Description
Computes the variance covariance matrix of an m
vector which results from a random effects model.
Usage
randomEffectsMatrix(zMatrix, vs, sigma2)
Arguments
zMatrix |
An |
vs |
The |
sigma2 |
The error variance. |
Details
We assume that y_{t}=\mu_t+\Sigma \gamma_j z_{t,j}+\sigma^2 \epsilon
,
where \gamma_j
are random variables with mean 0
and and variance covariance vs
, and z
is zMatrix
, \epsilon
is a standard normal random variable.
The zMatrix
could be a list of matricies
Value
Either a single variance covariance matrix or a list of them if zMatrix is a list.
Author(s)
David A. Schoenfeld
See Also
Examples
#Creates random variance covariance matrix for random follow up model
#where baseline is random among patients and all follow up have a compound symetry structure
#from a common random effect
vars=randomEffectsMatrix(cbind(rep(1,5),matrix(c(0,rep(1,4)),5,1)),
matrix(c(31.8,.8527,.8527,.6687),2,2),2.7085)
LPower(sample_size=40,power=.8,
xMatrix=list(cbind(1,c(0,rep(1,4)),0),cbind(1,c(0,rep(1,4)),c(0,rep(1,4)))),vMatrix=vars)
#Creates random variance covariance matrix for random slopes model
vars=randomEffectsMatrix(cbind(rep(1,5),0:4),
matrix(c(31.8,.8527,.8527,.6687),2,2),2.7085)
LPower(sample_size=40,power=.8,
xMatrix=list(cbind(1,0:4,0),cbind(1,0:4,0:4)),vMatrix=vars)
[Package LPower version 0.1.1 Index]