rEB.Finite.Bayes {LPRelevance} | R Documentation |
Relevance-Integrated Finite Bayes.
Description
Performs custom-tailored Finite Bayes inference via LASERs.
Usage
rEB.Finite.Bayes(X,z,X.target,z.target,m=c(4,6),m.EB=8, B=10, centering=TRUE,
nsample=min(1000,length(z)), g.method='DL',LP.type='L2', sd0=NULL,
theta.set.prior=seq(-2.5*sd(z),2.5*sd(z),length.out=500),
theta.set.post=seq(z.target-2.5*sd(z),z.target+2.5*sd(z),length.out=500),
post.alpha=0.8, plot=TRUE, ...)
Arguments
X |
A |
z |
A length |
X.target |
A length |
z.target |
the target |
m |
An ordered pair. First number indicates how many LP-nonparametric basis to construct for each |
m.EB |
The truncation point reflecting the concentration of true nonparametric prior density |
B |
Number of bags of bootstrap samples for Finite Bayes. |
centering |
Whether to perform regression-adjustment to center the data, default is TRUE. |
nsample |
Number of relevance samples generated for the target case. |
g.method |
Suggested method for finding parameter estimates |
LP.type |
User selects either "L2" for LP-orthogonal series representation of relevance density function |
sd0 |
Fixed standard deviation for |
theta.set.prior |
This indicates the set of grid points to compute prior density. |
theta.set.post |
This indicates the set of grid points to compute posterior density. |
post.alpha |
The alpha level for posterior HPD interval. |
plot |
Whether to display plots for prior and posterior of Relevance Finite Bayes. |
... |
Extra parameters to pass to LASER function. |
Value
A list containing the following items:
prior |
Relevant Finite Bayes prior results. |
$prior.fit |
Prior density curve estimation. |
posterior |
Relevant empirical Bayes posterior results. |
$post.fit |
Posterior density curve estimation. |
$post.mode |
Posterior mode for |
$post.mean |
Posterior mean for |
$post.mean.sd |
Standard error for the posterior mean. |
$HPD.interval |
The HPD interval for posterior |
g.par |
Parameters for |
LP.coef |
Reports the LP-coefficients of the relevance function |
sd0 |
Initial estimate for null standard errors. |
plots |
The plots for prior and posterior density. |
Author(s)
Subhadeep Mukhopadhyay, Kaijun Wang
Maintainer: Kaijun Wang <kaijunwang.19@gmail.com>
References
Mukhopadhyay, S., and Wang, K (2021) "On The Problem of Relevance in Statistical Inference". <arXiv:2004.09588>
Examples
data(funnel)
X<-funnel$x
z<-funnel$z
X.target=30
z.target=4.49
rFB.out=rEB.Finite.Bayes(X,z,X.target,z.target,B=5,nsample=1000,m=c(4,8),m.EB=8,
theta.set.prior=seq(-4,4,length.out=500),
theta.set.post=seq(0,5,length.out=500),cred.interval=0.8,parallel=FALSE)
rFB.out$plots$prior
rFB.out$plots$post