denoise {LPBkg} | R Documentation |
Coefficients of the denoised comparison density estimator
Description
Selects the largest coefficients according to the AIC or BIC criterion.
Usage
denoise(LP, n, method)
Arguments
LP |
Original vector of coefficients estimates. See details. |
n |
The dimension of the sample on which the estimates in |
method |
Either “AIC” or “BIC”. See details. |
Details
Give a vector of M
coefficient estimates, the largest is selected according to the AIC or BIC criterion as described in Algeri, 2019 and Mukhopadhyay, 2017.
Value
Selected coefficient estimates.
Author(s)
Sara Algeri
References
S. Algeri, 2019. Detecting new signals under background mismodelling. <arXiv:1906.06615>.
S. Mukhopadhyay, 2017. Large-scale mode identification and data-driven sciences. Electronic Journal of Statistics 11 (2017), no. 1, 215–240.
See Also
Legj
.
Examples
#generating data
x<-rnorm(1000,10,7)
xx<-x[x>=10 & x<=20]
#create suitable postulated quantile function
G<-pnorm(20,5,15)-pnorm(10,5,15)
g<-function(x){dnorm(x,5,15)/G}
#Vectorize quantile function
g<-Vectorize(g)
u<-g(xx)
Mmax=20
S<- as.matrix(Legj(u=u,m=Mmax))
n<-length(u)
LP <- apply(S,FUN="mean",2)
denoise(LP,n=n,method="AIC")
[Package LPBkg version 1.2 Index]