ParallelTest {LNPar} | R Documentation |
Testing for a Pareto tail
Description
This function computes the bootstrap test for the null hypothesis of a pure lognormal distribution versus the alternative of a lognormal-Pareto mixture. Implemented via parallel computing.
Usage
ParallelTest(nboot, y, obsTest, minRank)
Arguments
nboot |
number of bootstrap replications. |
y |
observed data. |
obsTest |
value of the test statistics computed with the data under analysis. |
minRank |
minimum possible rank of the threshold. |
Value
A list with the following elements:
LR: nboot simulated values of the llr test under the null hypothesis.
pval: p-value of the test.
Examples
minRank = 90
mixFit <- LPfit(TN2016,minRank,0)
ell1 <- mixFit$loglik
estNull <- c(mean(log(TN2016)),sd(log(TN2016)))
ellNull <- sum(log(dlnorm(TN2016,estNull[1],estNull[2])))
obsTest <- 2*(ell1-ellNull)
nboot = 2
TestRes = ParallelTest(nboot,TN2016,obsTest,minRank)
[Package LNPar version 0.1.0 Index]