LNRT {LNIRT} | R Documentation |
Log-normal response time modelling
Description
Log-normal response time modelling
Usage
LNRT(
RT,
data,
XG = 1000,
burnin = 10,
XGresid = 1000,
residual = FALSE,
td = TRUE,
WL = FALSE,
XPT = NULL,
XIT = NULL
)
Arguments
RT |
a Person-x-Item matrix of log-response times (time spent on solving an item). |
data |
either a list or a simLNIRT object containing the response time matrix. If a simLNIRT object is provided, in the summary the simulated time parameters are shown alongside of the estimates. If the RT variable cannot be found in the list, or if no data object is given, then the RT variable is taken from the environment from which LNRT is called. |
XG |
the number of MCMC iterations to perform (default: 1000). |
burnin |
the percentage of MCMC iterations to discard as burn-in period (default: 10). |
XGresid |
the number of MCMC iterations to perform before residuals are computed (default: 1000). |
residual |
compute residuals, >1000 iterations are recommended (default: false). |
td |
estimate the time-discrimination parameter (default: true). |
WL |
define the time-discrimination parameter as measurement error variance parameter (default: false). |
XPT |
an optional matrix of predictors for the person speed parameters. |
XIT |
an optional matrix of predictors for the item time intensity parameters. |
Value
an object of class LNRT.
Examples
## Not run:
# Log-normal response time modelling
data <- simLNIRT(N = 500, K = 20, rho = 0.8, WL = FALSE)
out <- LNRT(RT = RT, data = data, XG = 1500, residual = TRUE, td = TRUE, WL = FALSE)
summary(out) # Print results
out$Post.Means$Time.Intensity # Extract posterior mean estimates
library(coda)
mcmc.object <- as.mcmc(out$MCMC.Samples$Time.Intensity) # Extract MCMC samples for coda
summary(mcmc.object)
plot(mcmc.object)
## End(Not run)