LNIRT {LNIRT} | R Documentation |
Log-normal response time IRT modelling
Description
Log-normal response time IRT modelling
Usage
LNIRT(
RT,
Y,
data,
XG = 1000,
burnin = 10,
XGresid = 1000,
guess = FALSE,
par1 = FALSE,
residual = FALSE,
td = TRUE,
WL = FALSE,
ident = 2,
alpha,
beta,
phi,
lambda,
XPA = NULL,
XPT = NULL,
XIA = NULL,
XIT = NULL,
MBDY = NULL,
MBDT = NULL
)
Arguments
RT |
a Person-x-Item matrix of log-response times (time spent on solving an item). |
Y |
a Person-x-Item matrix of responses. |
data |
either a list or a simLNIRT object containing the response time and response matrices and optionally the predictors for the item and person parameters. If a simLNIRT object is provided, in the summary the simulated item and time parameters are shown alongside of the estimates. If the required variables cannot be found in the list, or if no data object is given, then the variables are taken from the environment from which LNIRT is called. |
XG |
the number of MCMC iterations to perform (default: 1000). |
burnin |
the percentage of MCMC iterations to discard as burn-in period (default: 10). |
XGresid |
the number of MCMC iterations to perform before residuals are computed (default: 1000). |
guess |
include guessing parameters in the IRT model (default: false). |
par1 |
use alternative parameterization (default: false). |
residual |
compute residuals, >1000 iterations are recommended (default: false). |
td |
estimate the time-discrimination parameter(default: true). |
WL |
define the time-discrimination parameter as measurement error variance parameter (default: false). |
ident |
set identification rule (default: 2). |
alpha |
an optional vector of pre-defined item-discrimination parameters. |
beta |
an optional vector of pre-defined item-difficulty parameters. |
phi |
an optional vector of predefined time discrimination parameters. |
lambda |
an optional vector of predefined time intensity parameters. |
XPA |
an optional matrix of predictors for the person ability parameters. |
XPT |
an optional matrix of predictors for the person speed parameters. |
XIA |
an optional matrix of predictors for the item-difficulty parameters. |
XIT |
an optional matrix of predictors for the item-intensity parameters. |
MBDY |
an optional indicator matrix for response missings due to the test design (0: missing by design, 1: not missing by design). |
MBDT |
an optional indicator matrix for response time missings due to the test design (0: missing by design, 1: not missing by design). |
Value
an object of class LNIRT.
Examples
## Not run:
# Log-normal response time IRT modelling
data <- simLNIRT(N = 500, K = 20, rho = 0.8, WL = FALSE)
out <- LNIRT(RT = RT, Y = Y, data = data, XG = 1500, residual = TRUE, WL = FALSE)
summary(out) # Print results
out$Post.Means$Item.Difficulty # Extract posterior mean estimates
library(coda)
mcmc.object <- as.mcmc(out$MCMC.Samples$Item.Difficulty) # Extract MCMC samples for coda
summary(mcmc.object)
plot(mcmc.object)
## End(Not run)