lmestMixed {LMest} | R Documentation |
Estimate mixed Latent Markov models
Description
Main function for estimating the mixed latent Markov (LM) models for categorical responses with discrete random effects in the latent model.
Usage
lmestMixed(responsesFormula = NULL,
data, index, k1, k2, start = 0,
weights = NULL, tol = 10^-8, maxit = 1000,
out_se = FALSE, seed = NULL)
Arguments
responsesFormula |
a symbolic description of the model to fit. A detailed description is given in the ‘Details’ section |
data |
a |
index |
a character vector with two elements, the first indicating the name of the unit identifier, and the second the time occasions |
k1 |
number of latent classes |
k2 |
number of latent states |
start |
type of starting values (0 = deterministic, 1 = random, 2 = initial values in input) |
weights |
an optional vector of weights for the available responses |
tol |
tolerance level for convergence |
maxit |
maximum number of iterations of the algorithm |
out_se |
to compute the information matrix and standard errors (FALSE is the default option) |
seed |
an integer value with the random number generator state |
Details
The function lmestMixed
estimates the mixed LM for categorical data. The function requires data in long format and two additional columns indicating the unit identifier and the time occasions.
responsesFormula
is used to specify the responses of the mixed LM model:
responsesFormula = y1 + y2 ~ NULL
the mixed LM model with two categorical responses (y1
andy2
) is specified;responsesFormula = NULL
all the columns in the data except the"id"
and"time"
columns are used as responses to estimate the mixed LM.
Missing responses are not allowed.
Value
Returns an object of class 'LMmixed'
(see LMmixed-class
).
Author(s)
Francesco Bartolucci, Silvia Pandolfi, Fulvia Pennoni, Alessio Farcomeni, Alessio Serafini
References
Bartolucci F., Pandolfi S., Pennoni F. (2017) LMest: An R Package for Latent Markov Models for Longitudinal Categorical Data, Journal of Statistical Software, 81(4), 1-38.
Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data, Chapman and Hall/CRC press.
Examples
## Not run:
# Example based on criminal data
data(data_criminal_sim)
data_criminal_sim <- data.frame(data_criminal_sim)
# Estimate mixed LM model for females
responsesFormula <- lmestFormula(data = data_criminal_sim,
response = "y")$responsesFormula
# fit mixed LM model only for females
out <- lmestMixed(responsesFormula = responsesFormula,
index = c("id","time"),
k1 = 2,
k2 = 2,
data = data_criminal_sim[data_criminal_sim$sex == 2,])
out
summary(out)
## End(Not run)