est_lm_mixed {LMest} | R Documentation |
Estimate mixed LM model
Description
Main function for estimating the mixed LM model with discrete random effect in the latent model.
The function is no longer maintained. Please look at lmestMixed
function
Usage
est_lm_mixed(S, yv = rep(1,nrow(S)), k1, k2, start = 0, tol = 10^-8, maxit = 1000,
out_se = FALSE)
Arguments
S |
array of available response configurations (n x TT x r) with categories starting from 0 |
yv |
vector of frequencies of the available configurations |
k1 |
number of latent classes |
k2 |
number of latent states |
start |
type of starting values (0 = deterministic, 1 = random) |
tol |
tolerance level for convergence |
maxit |
maximum number of iterations of the algorithm |
out_se |
to compute standard errors |
Value
la |
estimate of the mass probability vector (distribution of the random effects) |
Piv |
estimate of initial probabilities |
Pi |
estimate of transition probability matrices |
Psi |
estimate of conditional response probabilities |
lk |
maximum log-likelihood |
W |
posterior probabilities of the random effect |
np |
number of free parameters |
bic |
value of BIC for model selection |
call |
command used to call the function |
Author(s)
Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)
References
Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data, Chapman and Hall/CRC press.
Examples
## Not run:
# Example based of criminal data
# load data
data(data_criminal_sim)
out <- long2wide(data_criminal_sim, "id", "time", "sex",
c("y1","y2","y3","y4","y5","y6","y7","y8","y9","y10"), aggr = T, full = 999)
XX <- out$XX
YY <- out$YY
freq <- out$freq
n1 <- sum(freq[XX[,1] == 1])
n2 <- sum(freq[XX[,1] == 2])
n <- sum(freq)
# fit mixed LM model only for females
YY <- YY[XX[,1] == 2,,]
freq <- freq[XX[,1] == 2]
k1 <- 2
k2 <- 2
res <- est_lm_mixed(YY, freq, k1, k2, tol = 10^-8)
summary(res)
## End(Not run)