est_lm_cov_manifest {LMest} | R Documentation |
Estimate LM model with covariates in the measurement model
Description
Main function for estimating LM model with covariates in the measurement model based on a global logit parameterization.
The function is no longer maintained. Please look at lmest
function.
Usage
est_lm_cov_manifest(S, X, yv = rep(1,nrow(S)), k, q = NULL, mod = c("LM", "FM"),
tol = 10^-8, maxit = 1000, start = 0, mu = NULL, al = NULL,
be = NULL, si = NULL, rho = NULL, la = NULL, PI = NULL,
output = FALSE, out_se = FALSE)
Arguments
S |
array of available configurations (n x TT) with categories starting from 0 |
X |
array (n x TT x nc) of covariates with eventually includes lagged response (nc = number of covariates) |
yv |
vector of frequencies of the available configurations |
k |
number of latent states |
q |
number of support points for the AR(1) process |
mod |
model ("LM" = Latent Markov with stationary transition, "FM" = finite mixture) |
tol |
tolerance for the convergence (optional) and tolerance of conditional probability if tol>1 then return |
maxit |
maximum number of iterations of the algorithm |
start |
type of starting values (0 = deterministic, 1 = random, 2 = initial values in input) |
mu |
starting value for mu (optional) |
al |
starting value for al (optional) |
be |
starting value for be (optional) |
si |
starting value for si when mod="FM" (optional) |
rho |
starting value for rho when mod="FM" (optional) |
la |
starting value for la (optional) |
PI |
starting value for PI (optional) |
output |
to return additional output (PRED0, PRED1) |
out_se |
TRUE for computing information matrix and standard errors |
Value
mu |
vector of cutpoints |
al |
support points for the latent states |
be |
estimate of the vector of regression parameters |
si |
sigma of the AR(1) process (mod = "FM") |
rho |
parameter vector for AR(1) process (mod = "FM") |
la |
vector of initial probabilities |
PI |
transition matrix |
lk |
maximum log-likelihood |
np |
number of parameters |
aic |
value of AIC index |
bic |
value of BIC index |
PRED0 |
prediction of latent state |
PRED1 |
prediction of the overall latent effect |
sebe |
standard errors for the regression parameters be |
selrho |
standard errors for logit type transformation of rho |
J1 |
information matrix |
call |
command used to call the function |
Author(s)
Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)
References
Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data, Chapman and Hall/CRC press.
Bartolucci, F., Bacci, S. and Pennoni, F. (2014) Longitudinal analysis of the self-reported health status by mixture latent autoregressive models, Journal of the Royal Statistical Society - series C, 63, pp. 267-288
Examples
## Not run:
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS <- data_SRHS_long
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)
X <- res$XX
S <- 5-res$YY
# *** fit stationary LM model
res0 <- vector("list", 10)
tol <- 10^-6;
for(k in 1:10){
res0[[k]] <- est_lm_cov_manifest(S, X, k, 1, mod = "LM", tol)
save.image("example_SRHS.RData")
}
# *** fit the mixture latent auto-regressive model
tol <- 0.005
res <- vector("list",4)
k <- 1
q <- 51
res[[k]] <- est_lm_cov_manifest(S, X, k, q, mod = "FM", tol, output = TRUE)
for(k in 2:4) res[[k]] <- est_lm_cov_manifest(S, X, k, q = 61, mod = "FM", tol, output = TRUE)
## End(Not run)