est_lm_cov_latent {LMest} | R Documentation |
Estimate LM model with covariates in the latent model
Description
Main function for estimating the LM model with covariates in the latent model.
The function is no longer maintained. Please look at lmest
function.
Usage
est_lm_cov_latent(S, X1=NULL, X2=NULL, yv = rep(1,nrow(S)), k, start = 0, tol = 10^-8,
maxit = 1000, param = "multilogit", Psi, Be, Ga, fort = TRUE,
output = FALSE, out_se = FALSE, fixPsi = FALSE)
Arguments
S |
array of available configurations (n x TT x r) with categories starting from 0 (use NA for missing responses) |
X1 |
matrix of covariates affecting the initial probabilities (n x nc1) |
X2 |
array of covariates affecting the transition probabilities (n x TT-1 x nc2) |
yv |
vector of frequencies of the available configurations |
k |
number of latent states |
start |
type of starting values (0 = deterministic, 1 = random, 2 = initial values in input) |
tol |
tolerance level for checking convergence of the algorithm |
maxit |
maximum number of iterations of the algorithm |
param |
type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) |
Psi |
intial value of the array of the conditional response probabilities (mb x k x r) |
Be |
intial value of the parameters affecting the logit for the initial probabilities (if start=2) |
Ga |
intial value of the parametes affecting the logit for the transition probabilities (if start=2) |
fort |
to use fortran routine when possible (FALSE for not use fortran) |
output |
to return additional output (V,PI,Piv,Ul) |
out_se |
to compute the information matrix and standard errors |
fixPsi |
TRUE if Psi is given in input and is not updated anymore |
Value
lk |
maximum log-likelihood |
Be |
estimated array of the parameters affecting the logit for the initial probabilities |
Ga |
estimated array of the parameters affecting the logit for the transition probabilities |
Piv |
estimate of initial probability matrix |
PI |
estimate of transition probability matrices |
Psi |
estimate of conditional response probabilities |
np |
number of free parameters |
aic |
value of AIC for model selection |
bic |
value of BIC for model selection |
lkv |
log-likelihood trace at every step |
V |
array containing the posterior distribution of the latent states for each response configuration and time occasion |
Ul |
matrix containing the predicted sequence of latent states by the local decoding method |
sePsi |
standard errors for the conditional response matrix |
seBe |
standard errors for Be |
seGa |
standard errors for Ga |
call |
command used to call the function |
Author(s)
Francesco Bartolucci, Silvia Pandolfi, University of Perugia, http://www.stat.unipg.it/bartolucci
References
Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data, Chapman and Hall/CRC press.
Examples
## Not run:
# Example based on self-rated health status (SRHS) data
# load SRHS data
data(data_SRHS_long)
dataSRHS = data_SRHS_long
TT <- 8
head(dataSRHS)
res <- long2matrices(dataSRHS$id, X = cbind(dataSRHS$gender-1,
dataSRHS$race == 2 | dataSRHS$race == 3, dataSRHS$education == 4,
dataSRHS$education == 5, dataSRHS$age-50, (dataSRHS$age-50)^2/100),
Y = dataSRHS$srhs)
# matrix of responses (with ordered categories from 0 to 4)
S <- 5-res$YY
n <- dim(S)[1]
# matrix of covariates (for the first and the following occasions)
# colums are: gender,race,educational level (2 columns),age,age^2)
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]
# estimate the model
est2f <- est_lm_cov_latent(S, X1, X2, k = 2, output = TRUE, out_se = TRUE)
summary(est2f)
# average transition probability matrix
PI <- round(apply(est2f$PI[,,,2:TT], c(1,2), mean), 4)
# Transition probability matrix for white females with high educational level
ind1 <- X1[,1] == 1 & X1[,2] == 0 & X1[,4] == 1)
PI1 <- round(apply(est2f$PI[,,ind1,2:TT], c(1,2), mean), 4)
# Transition probability matrix for non-white male, low educational level
ind2 <- (X1[,1] == 0 & X1[,2] == 1 & X1[,3] == 0 & X1[,4] == 0)
PI2 <- round(apply(est2f$PI[,,ind2,2:TT], c(1,2), mean), 4)
## End(Not run)