est_lm_basic {LMest} | R Documentation |
Estimate basic LM model
Description
Main function for estimating the basic LM model.
The function is no longer maintained. Please look at lmest
function.
Usage
est_lm_basic(S, yv, k, start = 0, mod = 0, tol = 10^-8, maxit = 1000,
out_se = FALSE, piv = NULL, Pi = NULL, Psi = NULL)
Arguments
S |
array of available configurations (n x TT x r) with categories starting from 0 (use NA for missing responses) |
yv |
vector of frequencies of the available configurations |
k |
number of latent states |
start |
type of starting values (0 = deterministic, 1 = random, 2 = initial values in input) |
mod |
model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order) |
tol |
tolerance level for convergence |
maxit |
maximum number of iterations of the algorithm |
out_se |
to compute the information matrix and standard errors |
piv |
initial value of the initial probability vector (if start=2) |
Pi |
initial value of the transition probability matrices (k x k x TT) (if start=2) |
Psi |
initial value of the conditional response probabilities (mb x k x r) (if start=2) |
Value
lk |
maximum log-likelihood |
piv |
estimate of initial probability vector |
Pi |
estimate of transition probability matrices |
Psi |
estimate of conditional response probabilities |
np |
number of free parameters |
aic |
value of AIC for model selection |
bic |
value of BIC for model selection |
lkv |
log-likelihood trace at every step |
V |
array containing the posterior distribution of the latent states for each response configuration and time occasion |
sepiv |
standard errors for the initial probabilities |
sePi |
standard errors for the transition probabilities |
sePsi |
standard errors for the conditional response probabilities |
call |
command used to call the function |
Author(s)
Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci
References
Bartolucci, F., Farcomeni, A. and Pennoni, F. (2013) Latent Markov Models for Longitudinal Data, Chapman and Hall/CRC press.
Examples
## Not run:
# Example of drug consumption data
# load data
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
# fit of the Basic LM model
k <- 3
out <- est_lm_basic(S, yv, k, mod = 1)
summary(out)
# Example based on criminal data
# load criminal data
data(data_criminal_sim)
out <- long2wide(data_criminal_sim, "id" , "time" , "sex",
c("y1","y2","y3","y4","y5","y6","y7","y8","y9","y10"),aggr = T, full = 999)
XX <- out$XX
YY <- out$YY
freq <- out$freq
# fit basic LM model with increasing number of states to select the most suitable
Res0 <- vector("list", 7)
for(k in 1:7){
Res0[[k]] <- est_lm_basic(YY, freq, k, mod = 1, tol = 10^-4)
save(list <- ls(), file = "example_criminal_temp.RData")
}
out1 <- Res0[[6]]
## End(Not run)