bootstrap_lm_cov_latent_cont {LMest} | R Documentation |
Parametric bootstrap for LM models for continuous outcomes with individual covariates in the latent model
Description
Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.
The function is no longer maintained. Please look at bootstrap
function.
Usage
bootstrap_lm_cov_latent_cont(X1, X2, param = "multilogit", Mu, Si, Be, Ga, B = 100)
Arguments
X1 |
matrix of covariates affecting the initial probabilities (n x nc1) |
X2 |
array of covariates affecting the transition probabilities (n x TT-1 x nc2) |
param |
type of parametrization for the transition probabilities ("multilogit" = standard multinomial logit for every row of the transition matrix, "difflogit" = multinomial logit based on the difference between two sets of parameters) |
Mu |
matrix of conditional means for the response variables (r x k) |
Si |
var-cov matrix common to all states (r x r) |
Be |
parameters affecting the logit for the initial probabilities |
Ga |
parametes affecting the logit for the transition probabilities |
B |
number of bootstrap samples |
Value
mMu |
average of bootstrap estimates of the conditional means for the response variables |
mSi |
average of bootstrap estimates of the var-cov matrix |
mBe |
average of bootstrap estimates of the parameters affecting the logit for the initial probabilities |
mGa |
average of bootstrap estimates of the parameters affecting the logit for the transition probabilities |
seMu |
standard errors for the conditional means |
seSi |
standard errors for the var-cov matrix |
seBe |
standard errors for the parameters in Be |
seGa |
standard errors for the parameters in Ga |
Author(s)
Francesco Bartolucci, Silvia Pandolfi - University of Perugia (IT)
Examples
## Not run:
# Example based on multivariate longitudinal continuous data
data(data_long_cont)
TT <- 5
res <- long2matrices(data_long_cont$id, X = cbind(data_long_cont$X1, data_long_cont$X2),
Y = cbind(data_long_cont$Y1, data_long_cont$Y2,data_long_cont$Y3))
Y <- res$YY
X1 <- res$XX[,1,]
X2 <- res$XX[,2:TT,]
# estimate the model
est <- est_lm_cov_latent_cont(Y, X1, X2, k = 3, output = TRUE)
out <- bootstrap_lm_cov_latent_cont(X1, X2, Mu = est$Mu, Si = est$Si,
Be = est$Be, Ga = est$Ga, B = 1000)
## End(Not run)