bootstrap_lm_basic_cont {LMest} | R Documentation |
Parametric bootstrap for the basic LM model for continuous outcomes
Description
Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.
The function is no longer maintained. Please look at bootstrap
function.
Usage
bootstrap_lm_basic_cont(piv, Pi, Mu, Si, n, B = 100, start = 0, mod = 0, tol = 10^-6)
Arguments
piv |
initial probability vector |
Pi |
probability transition matrices (k x k x TT) |
Mu |
matrix of conditional means for the response variables (r x k) |
Si |
var-cov matrix common to all states (r x r) |
n |
sample size |
B |
number of bootstrap samples |
start |
type of starting values (0 = deterministic, 1 = random) |
mod |
model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order) |
tol |
tolerance level for convergence |
Value
mMu |
average of bootstrap estimates of the conditional means of the response variables |
mSi |
average of bootstrap estimates of the var-cov matrix |
mpiv |
average of bootstrap estimates of the initial probability vector |
mPi |
average of bootstrap estimates of the transition probability matrices |
seMu |
standard errors for the conditional means of the response variables |
seSi |
standard errors for the var-cov matrix |
sepiv |
standard errors for the initial probability vector |
sePi |
standard errors for the transition probability matrices |
Author(s)
Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci
Examples
## Not run:
# Example based on multivariate longitudinal continuous data
data(data_long_cont)
res <- long2matrices(data_long_cont$id, X = cbind(data_long_cont$X1, data_long_cont$X2),
Y = cbind(data_long_cont$Y1, data_long_cont$Y2,data_long_cont$Y3))
Y <- res$YY
n <- dim(Y)[1]
# fit of the Basic LM model for continuous outcomes
k <- 3
out1 <- est_lm_basic_cont(Y, k, mod = 1)
out2 <- bootstrap_lm_basic_cont(out1$piv, out1$Pi, out1$Mu, out1$Si, n, mod = 1, B = 1000)
## End(Not run)