bootstrap_lm_basic {LMest} | R Documentation |
Parametric bootstrap for the basic LM model
Description
Function that performs bootstrap parametric resampling to compute standard errors for the parameter estimates.
The function is no longer maintained. Please look at bootstrap
function.
Usage
bootstrap_lm_basic(piv, Pi, Psi, n, B = 100, start = 0, mod = 0, tol = 10^-6)
Arguments
piv |
initial probability vector |
Pi |
probability transition matrices (k x k x TT) |
Psi |
matrix of conditional response probabilities (mb x k x r) |
n |
sample size |
B |
number of bootstrap samples |
start |
type of starting values (0 = deterministic, 1 = random) |
mod |
model on the transition probabilities (0 for time-heter., 1 for time-homog., from 2 to (TT-1) partial homog. of that order) |
tol |
tolerance level for convergence |
Value
mPsi |
average of bootstrap estimates of the conditional response probabilities |
mpiv |
average of bootstrap estimates of the initial probability vector |
mPi |
average of bootstrap estimates of the transition probability matrices |
sePsi |
standard errors for the conditional response probabilities |
sepiv |
standard errors for the initial probability vector |
sePi |
standard errors for the transition probability matrices |
Author(s)
Francesco Bartolucci, Silvia Pandolfi, University of Perugia (IT), http://www.stat.unipg.it/bartolucci
Examples
## Not run:
# Example of drug consumption data
# load data
data(data_drug)
data_drug <- as.matrix(data_drug)
S <- data_drug[,1:5]-1
yv <- data_drug[,6]
n <- sum(yv)
# fit of the Basic LM model
k <- 3
out1 <- est_lm_basic(S, yv, k, mod = 1, out_se = TRUE)
out2 <- bootstrap_lm_basic(out1$piv, out1$Pi, out1$Psi, n, mod = 1, B = 1000)
## End(Not run)