lmn_prior {LMN} | R Documentation |
Conjugate prior specification for LMN models.
Description
The conjugate prior for LMN models is the Matrix-Normal Inverse-Wishart (MNIW) distribution. This convenience function converts a partial MNIW prior specification into a full one.
Usage
lmn_prior(p, q, Lambda, Omega, Psi, nu)
Arguments
p |
Integer specifying row dimension of |
q |
Integer specifying the dimension of |
Lambda |
Mean parameter for
|
Omega |
Row-wise precision parameter for
|
Psi |
Scale parameter for
|
nu |
Degrees-of-freedom parameter for |
Details
The Matrix-Normal Inverse-Wishart (MNIW) distribution (\boldsymbol{B}, \boldsymbol{\Sigma}) \sim \textrm{MNIW}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}, \boldsymbol{\Psi}, \nu)
on random matrices \boldsymbol{X}_{p \times q}
and symmetric positive-definite \boldsymbol{\Sigma}_{q \times q}
is defined as
\begin{array}{rcl}
\boldsymbol{\Sigma} & \sim & \textrm{Inverse-Wishart}(\boldsymbol{\Psi}, \nu) \\
\boldsymbol{B} \mid \boldsymbol{\Sigma} & \sim & \textrm{Matrix-Normal}(\boldsymbol{\Lambda}, \boldsymbol{\Omega}^{-1}, \boldsymbol{\Sigma}),
\end{array}
where the Matrix-Normal distribution is defined in lmn_suff()
.
Value
A list with elements Lambda
, Omega
, Psi
, nu
with the proper dimensions specified above, except possibly Omega = NA
or nu = NA
(see Details).
Examples
# problem dimensions
p <- 2
q <- 4
# default noninformative prior pi(Beta, Sigma) ~ |Sigma|^(-(q+1)/2)
lmn_prior(p, q)
# pi(Sigma) ~ |Sigma|^(-(q+1)/2)
# Beta | Sigma ~ Matrix-Normal(0, I, Sigma)
lmn_prior(p, q, Lambda = 0, Omega = 1)
# Sigma = diag(q)
# Beta ~ Matrix-Normal(0, I, Sigma = diag(q))
lmn_prior(p, q, Lambda = 0, Omega = 1, nu = NA)