lmn_post {LMN} | R Documentation |
Parameters of the posterior conditional distribution of an LMN model.
Description
Calculates the parameters of the LMN model's Matrix-Normal Inverse-Wishart (MNIW) conjugate posterior distribution (see Details).
Usage
lmn_post(suff, prior)
Arguments
suff |
An object of class |
prior |
A list with elements |
Details
The Matrix-Normal Inverse-Wishart (MNIW) distribution on random matrices
and symmetric positive-definite
is defined as
where the Matrix-Normal distribution is defined in lmn_suff()
.
The posterior MNIW distribution is required to be a proper distribution, but the prior is not. For example, prior = NULL
corresponds to the noninformative prior
Value
A list with elements named as in prior
specifying the parameters of the posterior MNIW distribution. Elements Omega = NA
and nu = NA
specify that parameters Beta = 0
and Sigma = diag(q)
, respectively, are known and not to be estimated.
Examples
# generate data
n <- 50
q <- 2
p <- 3
Y <- matrix(rnorm(n*q),n,q) # response matrix
X <- matrix(rnorm(n*p),n,p) # covariate matrix
V <- .5 * exp(-(1:n)/n) # Toeplitz variance specification
suff <- lmn_suff(Y = Y, X = X, V = V, Vtype = "acf") # sufficient statistics