llm {LLM} | R Documentation |
Create Logit Leaf Model
Description
This function creates the logit leaf model. It takes a dataframe with numeric values as input and a corresponding vector with dependent values. Decision tree parameters threshold for pruning and number of observations per leaf can be set.
Usage
llm(X, Y, threshold_pruning = 0.25, nbr_obs_leaf = 100)
Arguments
X |
Dataframe containing numerical independent variables. |
Y |
Numerical vector of dependent variable. Currently only binary classification is supported. |
threshold_pruning |
Set confidence threshold for pruning. Default 0.25. |
nbr_obs_leaf |
The minimum number of observations in a leaf node. Default 100. |
Value
An object of class logitleafmodel, which is a list with the following components:
Segment Rules |
The decision rules that define segments. Use |
Coefficients |
The segment specific logistic regression coefficients. Use |
Full decision tree for segmentation |
The raw decision tree. Use |
Observations per segment |
The raw decision tree. Use |
Incidence of dependent per segment |
The raw decision tree. Use |
Author(s)
Arno De Caigny, a.de-caigny@ieseg.fr, Kristof Coussement, k.coussement@ieseg.fr and Koen W. De Bock, kdebock@audencia.com
References
Arno De Caigny, Kristof Coussement, Koen W. De Bock, A New Hybrid Classification Algorithm for Customer Churn Prediction Based on Logistic Regression and Decision Trees, European Journal of Operational Research (2018), doi: 10.1016/j.ejor.2018.02.009.
See Also
predict.llm
, table.llm.html
, llm.cv
Examples
## Load PimaIndiansDiabetes dataset from mlbench package
if (requireNamespace("mlbench", quietly = TRUE)) {
library("mlbench")
}
data("PimaIndiansDiabetes")
## Split in training and test (2/3 - 1/3)
idtrain <- c(sample(1:768,512))
PimaTrain <-PimaIndiansDiabetes[idtrain,]
Pimatest <-PimaIndiansDiabetes[-idtrain,]
## Create the LLM
Pima.llm <- llm(X = PimaTrain[,-c(9)],Y = PimaTrain$diabetes,
threshold_pruning = 0.25,nbr_obs_leaf = 100)