| tuneLasso {LINselect} | R Documentation |
tuneLasso
Description
tune the lasso parameter in the
regression model : Y= X \beta + \sigma N(0,1)
using the lasso or the gauss-lasso method
Usage
tuneLasso(Y, X, normalize = TRUE, method = c("lasso", "Glasso"),
dmax = NULL, Vfold = TRUE, V = 10, LINselect = TRUE, a = 0.5,
K = 1.1, verbose = TRUE, max.steps = NULL)
Arguments
Y |
vector with n components : response variable. |
X |
matrix with n rows and p columns : covariates. |
normalize |
logical : corresponds to the input |
method |
vector of characters whose components are subset of (“lasso”, “Glasso”) |
dmax |
integer : maximum number of variables in the lasso
estimator. |
Vfold |
logical : if TRUE the tuning is done by Vfold-CV |
V |
integer. Gives the value of V in the Vfold-CV procedure |
LINselect |
logical : if TRUE the tuning is done by LINselect |
a |
scalar : value of the parameter |
K |
scalar : value of the parameter |
verbose |
logical : if TRUE a trace of the current process is displayed in real time. |
max.steps |
integer : maximum number of steps in the lasso
procedure. |
Value
A list with one or two components according to
method.
lasso if method contains "lasso" is a list with one or two components
according to Vfold and LINselect.
LsifLINselect=TRUE. A list with componentssupport: vector of integers. Estimated support of the parameter vector\beta.coef: vector whose first component is the estimated intercept.
The other components are the estimated non zero coefficients.fitted: vector with length n. Fitted value of the response.crit: vector containing the values of the criteria for each value oflambda.lambda: vector containing the values of the tuning parameter of the lasso algorithm.
CVifVfold=TRUE. A list with componentssupport: vector of integers. Estimated support of the parameter vector\beta.coef: vector whose first component is the estimated intercept.
The other components are the estimated non zero coefficients.fitted: vector with length n. Fitted value of the response.crit: vector containing the values of the criteria for each value oflambda.crit.err: vector containing the estimated standard-error of the criteria.lambda: vector containing the values of the tuning parameter of the lasso algorithm.
Glasso if method contains "Glasso". The same as lasso.
Note
library elasticnet is loaded.
Author(s)
Yannick Baraud, Christophe Giraud, Sylvie Huet
References
See Baraud et al. 2010
http://hal.archives-ouvertes.fr/hal-00502156/fr/
Giraud et al., 2013,
https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ss/1356098553
Examples
#source("charge.R")
library("LINselect")
# simulate data with
## Not run: ex <- simulData(p=100,n=100,r=0.8,rSN=5)
## Not run: ex1.tuneLasso <- tuneLasso(ex$Y,ex$X)
## Not run: data(diabetes)
## Not run: attach(diabetes)
## Not run: ex.diab <- tuneLasso(y,x2)
## Not run: detach(diabetes)