tuneLasso {LINselect} | R Documentation |
tuneLasso
Description
tune the lasso parameter in the
regression model : Y= X \beta + \sigma N(0,1)
using the lasso or the gauss-lasso method
Usage
tuneLasso(Y, X, normalize = TRUE, method = c("lasso", "Glasso"),
dmax = NULL, Vfold = TRUE, V = 10, LINselect = TRUE, a = 0.5,
K = 1.1, verbose = TRUE, max.steps = NULL)
Arguments
Y |
vector with n components : response variable. |
X |
matrix with n rows and p columns : covariates. |
normalize |
logical : corresponds to the input |
method |
vector of characters whose components are subset of (“lasso”, “Glasso”) |
dmax |
integer : maximum number of variables in the lasso
estimator. |
Vfold |
logical : if TRUE the tuning is done by Vfold-CV |
V |
integer. Gives the value of V in the Vfold-CV procedure |
LINselect |
logical : if TRUE the tuning is done by LINselect |
a |
scalar : value of the parameter |
K |
scalar : value of the parameter |
verbose |
logical : if TRUE a trace of the current process is displayed in real time. |
max.steps |
integer : maximum number of steps in the lasso
procedure. |
Value
A list with one or two components according to
method
.
lasso
if method
contains "lasso" is a list with one or two components
according to Vfold
and LINselect
.
Ls
ifLINselect
=TRUE. A list with componentssupport
: vector of integers. Estimated support of the parameter vector\beta
.coef
: vector whose first component is the estimated intercept.
The other components are the estimated non zero coefficients.fitted
: vector with length n. Fitted value of the response.crit
: vector containing the values of the criteria for each value oflambda
.lambda
: vector containing the values of the tuning parameter of the lasso algorithm.
CV
ifVfold
=TRUE. A list with componentssupport
: vector of integers. Estimated support of the parameter vector\beta
.coef
: vector whose first component is the estimated intercept.
The other components are the estimated non zero coefficients.fitted
: vector with length n. Fitted value of the response.crit
: vector containing the values of the criteria for each value oflambda
.crit.err
: vector containing the estimated standard-error of the criteria.lambda
: vector containing the values of the tuning parameter of the lasso algorithm.
Glasso
if method
contains "Glasso". The same as lasso
.
Note
library elasticnet
is loaded.
Author(s)
Yannick Baraud, Christophe Giraud, Sylvie Huet
References
See Baraud et al. 2010
http://hal.archives-ouvertes.fr/hal-00502156/fr/
Giraud et al., 2013,
https://projecteuclid.org/DPubS?service=UI&version=1.0&verb=Display&handle=euclid.ss/1356098553
Examples
#source("charge.R")
library("LINselect")
# simulate data with
## Not run: ex <- simulData(p=100,n=100,r=0.8,rSN=5)
## Not run: ex1.tuneLasso <- tuneLasso(ex$Y,ex$X)
## Not run: data(diabetes)
## Not run: attach(diabetes)
## Not run: ex.diab <- tuneLasso(y,x2)
## Not run: detach(diabetes)