optim.probs {LCAextend} | R Documentation |
performs the M step of the EM algorithm for the probability parameters
Description
estimates the probability parameters (p
, p.trans
, p0
,...) in the M step of the EM algorithm in both cases
with and without familial dependence. This is an internal
function not meant to be called by the user.
Usage
optim.probs(ped, probs, optim.probs.indic = c(TRUE, TRUE, TRUE, TRUE),
res.weight, famdep = TRUE)
Arguments
ped |
a matrix of pedigrees data, see |
probs |
all probability parameters to be optimized, |
optim.probs.indic |
a vector of logical values indicating which probability parameters to be updated, |
res.weight |
a matrix of |
famdep |
a logical variable indicating if familial dependence model is used or not. Default is |
Details
explicit estimators are computed in function of the weights.
Value
the function returns the estimated probs
of all probability parameters.
References
TAYEB et al.: Solving Genetic Heterogeneity in Extended Families by Identifying Sub-types of Complex Diseases. Computational Statistics, 2011, DOI: 10.1007/s00180-010-0224-2.
Examples
#data
data(ped.cont)
data(peel)
#probs and param
data(probs)
data(param.cont)
#e step
weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
var.list=NULL,famdep=TRUE)
#the function
optim.probs(ped.cont,probs,weight,optim.probs.indic=
c(TRUE,TRUE,TRUE,TRUE),famdep=TRUE)