optim.indep.norm {LCAextend} | R Documentation |
performs the M step for measurement density parameters in multinormal case
Description
Estimates the mean
mu
and parameters of the variance-covariance matrix
sigma
of a multinormal distribution for the measurements with
diagonal variance-covariance matrices for each class, i.e. measurements are supposed independent.
Usage
optim.indep.norm(y, status, weight, param, x = NULL, var.list = NULL)
Arguments
y |
a matrix of continuous measurements (only for symptomatic subjects), |
status |
symptom status of all individuals, |
weight |
a matrix of |
param |
a list of measurement density parameters, here is a list of |
x |
a matrix of covariates (optional). Default id |
var.list |
a list of integers indicating which covariates (taken from |
Details
The values of explicit estimators are computed for both mu
and
sigma
. All variance-covariance matrices sigma
are
diagonal, i.e. measurements are supposed independent. Treatment of
covariates is not yet implemented, and any
provided covariate value will be ignored.
Value
The function returns a list of estimated parameters param
.
Examples
#data
data(ped.cont)
status <- ped.cont[,6]
y <- ped.cont[,7:ncol(ped.cont)]
data(peel)
#probs and param
data(probs)
data(param.cont)
#e step
weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
var.list=NULL,famdep=TRUE)$w
weight <- matrix(weight[,1,1:length(probs$p)],nrow=nrow(ped.cont),
ncol=length(probs$p))
#the function
optim.indep.norm(y[status==2,],status,weight,param.cont,x=NULL,
var.list=NULL)