optim.equal.norm {LCAextend} | R Documentation |
performs the M step for measurement density parameters in multinormal case
Description
Estimates the mean
mu
and parameters of the variance-covariance matrix
sigma
of a multinormal distribution for the measurements
with equal variance for all measurements and equal covariance between
all pairs of measurements within each class. The variance and
covariance parameters are however distinct for each class.
Usage
optim.equal.norm(y, status, weight, param, x = NULL, var.list = NULL)
Arguments
y |
a matrix of continuous measurements (only for symptomatic subjects), |
status |
symptom status of all individuals, |
weight |
a matrix of |
param |
a list of measurement density parameters, here is a list of |
x |
a matrix of covariates (optional). Default id |
var.list |
a list of integers indicating which covariates (taken from |
Details
The values of explicit estimators are computed for both mu
and
sigma
. The variance-covariance matrices sigma
are
distinct for each class. Treatment of covariates is not yet implemented, and any
provided covariate value will be ignored.
Value
The function returns a list of estimated parameters param
.
Examples
#data
data(ped.cont)
status <- ped.cont[,6]
y <- ped.cont[,7:ncol(ped.cont)]
data(peel)
#probs and param
data(probs)
data(param.cont)
#e step
weight <- e.step(ped.cont,probs,param.cont,dens.norm,peel,x=NULL,
var.list=NULL,famdep=TRUE)$w
weight <- matrix(weight[,1,1:length(probs$p)],nrow=nrow(ped.cont),
ncol=length(probs$p))
#the function
optim.equal.norm(y[status==2,],status,weight,param.cont,x=NULL,
var.list=NULL)