optim.const.ordi {LCAextend} | R Documentation |
performs the M step for the measurement distribution parameters in multinomial case, with an ordinal constraint on the parameters
Description
Estimates the cumulative logistic coefficients alpha
in the
case of multinomial (or ordinal) data with an ordinal constraint on
the parameters.
Usage
optim.const.ordi(y, status, weight, param, x = NULL, var.list = NULL)
Arguments
y |
a matrix of discrete (or ordinal) measurements (only for symptomatic subjects), |
status |
symptom status of all individuals, |
weight |
a matrix of |
param |
a list of measurement density parameters, here is a list of |
x |
a matrix of covariates (optional). Default id |
var.list |
a list of integers indicating which covariates (taken from |
Details
the constraint on the parameters is that, for a symptom j
, the rows alpha[[j]][k,]
are equal for all classes k
except the first values.
Therefore, maximum likelihood estimators are not explicit and the
function lrm
of the package rms
is used to perform a
numerical optimization.
Value
The function returns a list of estimated parameters param
satisfying the constraint.
Examples
#data
data(ped.ordi)
status <- ped.ordi[,6]
y <- ped.ordi[,7:ncol(ped.ordi)]
data(peel)
#probs and param
data(probs)
data(param.ordi)
#e step
weight <- e.step(ped.ordi,probs,param.ordi,dens.prod.ordi,peel,x=NULL,
var.list=NULL,famdep=TRUE)$w
weight <- matrix(weight[,1,1:length(probs$p)],nrow=nrow(ped.ordi),
ncol=length(probs$p))
#the function
optim.const.ordi(y[status==2,],status,weight,param.ordi,x=NULL,
var.list=NULL)