n.param {LCAextend} | R Documentation |
computes the number of parameters of a model
Description
computes the number of free parameters of a model, depending in the number of classes, the type of parameter optimization and the used of familial dependence, to be used in BIC model selection. This is an internal function not meant to be called by the user.
Usage
n.param(y, K, trans.const = TRUE, optim.param,
optim.probs.indic = c(TRUE, TRUE, TRUE, TRUE), famdep = TRUE)
Arguments
y |
a matrix of measurements, |
K |
an integer, the number of latent classes of a candiate model, |
trans.const |
a logical variable indicating if the parental constraint is used. Parental constraint means that the class of a subject can be only one
of his parents classes. Default is |
optim.param |
a function used for parameter optimization, see |
optim.probs.indic |
a vector of logical values indicating which probability parameters to be updated, see |
famdep |
a logical variable indicating if familial dependence model is used or not. Default is |
Value
The function returns the number of free parameters (of the measurement distribution and the probabilities of the latent classes).
See Also
See also model.select
.
Examples
data(ped.cont)
y <- ped.cont[,7:ncol(ped.cont)]
n.param(y,K=3,trans.const=TRUE,optim.indep.norm,
optim.probs.indic=c(TRUE,TRUE,TRUE,TRUE),famdep=TRUE)