pefa {LAWBL} | R Documentation |
Partially Exploratory Factor Analysis
Description
PEFA
is a partially exploratory approach to factor analysis, which can incorporate
partial knowledge together with unknown number of factors, using bi-level Bayesian regularization.
When partial knowledge is not needed, it reduces to the fully exploratory factor analysis (FEFA
; Chen, 2021).
A large number of factors can be imposed for selection where true factors will be identified against spurious factors.
The loading vector is reparameterized to tackle model sparsity at the factor and loading levels
with the multivariate spike and slab priors. Parameters are obtained by sampling from the posterior
distributions with the Markov chain Monte Carlo (MCMC) techniques. The estimation results can be summarized
with summary.lawbl
and the trace or density of the posterior can be plotted with plot_lawbl
.
Usage
pefa(
dat,
Q = NULL,
K = 8,
mjf = 3,
PPMC = FALSE,
burn = 5000,
iter = 5000,
missing = NA,
eig_eps = 1,
sign_eps = 0,
rfit = TRUE,
rs = FALSE,
update = 1000,
rseed = 12345,
verbose = FALSE,
auto_stop = FALSE,
max_conv = 10,
digits = 4
)
Arguments
dat |
A |
Q |
A |
K |
Maximum number of factors for selection under |
mjf |
Minimum number of items per factor. |
PPMC |
logical; |
burn |
Number of burn-in iterations before posterior sampling. |
iter |
Number of formal iterations for posterior sampling (> 0). |
missing |
Value for missing data (default is |
eig_eps |
minimum eigenvalue for factor extraction. |
sign_eps |
minimum value for switch sign of loading vector. |
rfit |
logical; |
rs |
logical; |
update |
Number of iterations to update the sampling information. |
rseed |
An integer for the random seed. |
verbose |
logical; to display the sampling information every
|
auto_stop |
logical; |
max_conv |
maximum consecutive number of convergence for auto stop. |
digits |
Number of significant digits to print when printing numeric values. |
Value
pcfa
returns an object of class lawbl
without item intercepts. It contains a lot of information about
the posteriors that can be summarized using summary.lawbl
.
References
Chen, J. (2021). A Bayesian regularized approach to exploratory factor analysis in one step. Structural Equation Modeling: A Multidisciplinary Journal, 28(4), 518-528. DOI: 10.1080/10705511.2020.1854763.
Chen, J. (In Press). Fully and partially exploratory factor analysis with bi-level Bayesian regularization. Behavior Research Methods.
Examples
#####################################################
# Example 1: Fully EFA #
#####################################################
dat <- sim18cfa0$dat
m0 <- pefa(dat = dat, K=5, burn = 2000, iter = 2000,verbose = TRUE)
summary(m0) # summarize basic information
summary(m0, what = 'qlambda') #summarize significant loadings in pattern/Q-matrix format
summary(m0, what = 'phi') #summarize factorial correlations
summary(m0, what = 'eigen') #summarize factorial eigenvalue
##########################################################
# Example 2: PEFA with two factors partially specified #
##########################################################
J <- ncol(dat)
K <- 5
Q<-matrix(-1,J,K);
Q[1:2,1]<-Q[7:8,2]<-1
Q
m1 <- pefa(dat = dat, Q = Q,burn = 2000, iter = 2000,verbose = TRUE)
summary(m1)
summary(m1, what = 'qlambda')
summary(m1, what = 'phi')
summary(m1,what='eigen')