pcirm {LAWBL} | R Documentation |
Partially Confirmatory Item Response Model
Description
pcirm
is a partially confirmatory approach to item response models (Chen, 2020),
which estimates the intercept for continuous and dichotomous data. Similar to PCFA and GPCFA,
there are two major model variants with different constraints for identification. One assumes local
independence (LI) with a more exploratory tendency, which can be also called the E-step.
The other allows local dependence (LD) with a more confirmatory tendency, which can be also
called the C-step. Parameters are obtained by sampling from the posterior distributions with
the Markov chain Monte Carlo (MCMC) techniques. Different Bayesian Lasso methods are used to
regularize the loading pattern and LD. The estimation results can be summarized with summary.lawbl
and the factorial eigenvalue can be plotted with plot_lawbl
.
Usage
pcirm(
dat,
Q,
LD = TRUE,
cati = NULL,
PPMC = FALSE,
burn = 5000,
iter = 5000,
update = 1000,
missing = NA,
rseed = 12345,
sign_check = FALSE,
sign_eps = -0.5,
auto_stop = FALSE,
max_conv = 10,
digits = 4,
alas = FALSE,
verbose = FALSE
)
Arguments
dat |
A |
Q |
A |
LD |
logical; |
cati |
The set of dichotomous items in sequence number (i.e., 1 to |
PPMC |
logical; |
burn |
Number of burn-in iterations before posterior sampling. |
iter |
Number of formal iterations for posterior sampling (> 0). |
update |
Number of iterations to update the sampling information. |
missing |
Value for missing data (default is |
rseed |
An integer for the random seed. |
sign_check |
logical; |
sign_eps |
minimum value for switch sign of loading vector (if |
auto_stop |
logical; |
max_conv |
maximum consecutive number of convergence for auto stop. |
digits |
Number of significant digits to print when printing numeric values. |
alas |
logical; for adaptive Lasso or not. The default is |
verbose |
logical; to display the sampling information every
|
Value
pcirm
returns an object of class lawbl
with item intercepts. It contains a lot of information about
the posteriors that can be summarized using summary.lawbl
.
References
Chen, J. (2020). A partially confirmatory approach to the multidimensional item response theory with the Bayesian Lasso. Psychometrika. 85(3), 738-774. DOI:10.1007/s11336-020-09724-3.
Examples
####################################
# Example 1: Estimation with LD #
####################################
dat <- sim24ccfa21$dat
J <- ncol(dat)
K <- 3
Q<-matrix(-1,J,K);
Q[1:8,1]<-Q[9:16,2]<-Q[17:24,3]<-1
m0 <- pcirm(dat = dat, Q = Q, LD = TRUE, cati = -1, burn = 2000,iter = 2000)
summary(m0) # summarize basic information
summary(m0, what = 'qlambda') #summarize significant loadings in pattern/Q-matrix format
summary(m0, what = 'offpsx') #summarize significant LD terms
####################################
# Example 2: Estimation with LD #
####################################
Q<-cbind(Q,-1);
Q[15:16,4]<-1
m1 <- pcirm(dat = dat, Q = Q, LD = FALSE, cati = -1, burn = 2000,iter = 2000)
summary(m1) # summarize basic information
summary(m1, what = 'qlambda') #summarize significant loadings in pattern/Q-matrix format
summary(m1, what = 'offpsx') #summarize significant LD terms