clpm_to_ctm {LAM} | R Documentation |
Transformation of Path Coefficients of Cross-Lagged Panel Model
Description
Transforms path coefficients \bold{\Phi}(\Delta t_1)
of a cross-lagged panel model
(CLPM) based on time interval \Delta t_1
into a time interval \Delta t_2
.
The transformation is based on the assumption of a continuous time model (CTM;
Voelkle, Oud, Davidov, & Schmidt, 2012) including a drift matrix \bold{A}
.
The transformation relies on the matrix exponential function
(see Kuiper & Ryan, 2018),
i.e. \bold{\Phi}(\Delta t_1)=\exp( \bold{A} \Delta t_1 )
.
Usage
clpm_to_ctm(Phi1, delta1=1, delta2=2, Phi1_vcov=NULL)
Arguments
Phi1 |
Matrix of path coefficients |
delta1 |
Numeric |
delta2 |
Numeric |
Phi1_vcov |
Optional covariance matrix for parameter estimates of
|
Value
A list with following entries
A |
Drift matrix |
A_se |
Standard errors of drift matrix |
A_vcov |
Covariance matrix of drift matrix |
Phi2 |
Path coefficients |
Phi2_se |
Standard errors for |
Phi2_vcov |
Covariance matrix for |
References
Kuiper, R. M., & Ryan, O. (2018). Drawing conclusions from cross-lagged relationships: Re-considering the role of the time-interval. Structural Equation Modeling, 25(5), 809-823. doi:10.1080/10705511.2018.1431046
Voelkle, M. C., Oud, J. H., Davidov, E., & Schmidt, P. (2012). An SEM approach to continuous time modeling of panel data: Relating authoritarianism and anomia. Psychological Methods, 17(2), 176-192. doi:10.1037/a0027543
Examples
#############################################################################
# EXAMPLE 1: Example of Voelkle et al. (2012)
#############################################################################
library(expm)
# path coefficient matrix of Voelkle et al. (2012), but see
# also Kuiper and Ryan (2018)
Phi1 <- matrix( c( .64, .18,
.03, .89 ), nrow=2, ncol=2, byrow=TRUE )
# transformation to time interval 2
mod <- LAM::clpm_to_ctm(Phi1, delta1=1, delta2=2)
print(mod)
## Not run:
#############################################################################
# EXAMPLE 2: Example with two dimensions
#############################################################################
library(STARTS)
library(lavaan)
data(data.starts02, package="STARTS")
dat <- data.starts02$younger_cohort
cormat <- cov2cor(as.matrix(dat$covmat))
#-- estimate CLPM
lavmodel <- "
a2 ~ a1 + b1
b2 ~ a1 + b1
"
mod <- lavaan::sem(lavmodel, sample.cov=cormat, sample.nobs=500)
summary(mod)
#- select parameters
pars <- c("a2~a1", "a2~b1", "b2~a1", "b2~b1")
Phi1 <- matrix( coef(mod)[pars], 2, 2, byrow=TRUE)
Phi1_vcov <- vcov(mod)[ pars, pars ]
# conversion to time interval 1.75
LAM::clpm_to_ctm(Phi1=Phi1, delta1=1, delta2=1.75, Phi1_vcov=Phi1_vcov)
#############################################################################
# EXAMPLE 3: Example with three dimensions
#############################################################################
library(STARTS)
library(lavaan)
data(data.starts02, package="STARTS")
dat <- data.starts02$younger_cohort
cormat <- cov2cor(as.matrix(dat$covmat))
#-- estimate CLPM
lavmodel <- "
a4 ~ a1 + b1 + c1
b4 ~ a1 + b1 + c1
c4 ~ a1 + b1 + c1
"
mod <- lavaan::sem(lavmodel, sample.cov=cormat, sample.nobs=500)
summary(mod)
#- select parameters
pars <- 1:9
Phi1 <- matrix( coef(mod)[pars], 3, 3, byrow=TRUE)
Phi1_vcov <- vcov(mod)[ pars, pars ]
# conversion frpm time interval 3 to time interval 1
LAM::clpm_to_ctm(Phi1=Phi1, delta1=3, delta2=1, Phi1_vcov=Phi1_vcov)
## End(Not run)