update_beta_MM_sparse {L2E} | R Documentation |
Beta update in L2E sparse regression - MM
Description
update_beta_MM_sparse
updates beta for L2E sparse regression using the distance penalty
Usage
update_beta_MM_sparse(
y,
X,
beta,
tau,
k,
rho,
stepsize = 0.9,
sigma = 0.5,
max_iter = 100,
tol = 1e-04
)
Arguments
y |
Response vector |
X |
Design matrix |
beta |
Initial vector of regression coefficients |
tau |
Initial precision estimate |
k |
The number of nonzero entries in the estimated coefficients |
rho |
The parameter in the proximal distance algorithm |
stepsize |
The stepsize parameter for the MM algorithm (0, 1) |
sigma |
The halving parameter sigma (0, 1) |
max_iter |
Maximum number of iterations |
tol |
Relative tolerance |
Value
Returns a list object containing the new estimate for beta (vector) and the number of iterations (scalar) the update step utilized
[Package L2E version 2.0 Index]