l2e_regression_isotonic {L2E} | R Documentation |
L2E isotonic regression - PG
Description
l2e_regression_isotonic
performs L2E isotonic regression via block coordinate descent
with proximal gradient for updating both beta and tau.
Usage
l2e_regression_isotonic(
y,
b,
tau,
max_iter = 100,
tol = 1e-04,
Show.Time = TRUE
)
Arguments
y |
Response vector |
b |
Initial vector of regression coefficients |
tau |
Initial precision estimate |
max_iter |
Maximum number of iterations |
tol |
Relative tolerance |
Show.Time |
Report the computing time |
Value
Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta and tau (vectors)
Examples
set.seed(12345)
n <- 200
tau <- 1
x <- seq(-2.5, 2.5, length.out=n)
f <- x^3
y <- f + (1/tau)*rnorm(n)
# Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- l2e_regression_isotonic(y, b, tau)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
iso <- isotone::gpava(1:n, y)$x
lines(x, iso, col='blue', lwd=3)
lines(x, sol$beta, col='dark green', lwd=3)
# Contaminated Data
ix <- 0:9
y[45 + ix] <- 14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
sol <- l2e_regression_isotonic(y, b, tau)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
iso <- isotone::gpava(1:n, y)$x
lines(x, iso, col='blue', lwd=3)
lines(x, sol$beta, col='dark green', lwd=3)
[Package L2E version 2.0 Index]