L2E_isotonic {L2E} | R Documentation |
L2E isotonic regression
Description
L2E_isotonic
performs isotonic regression under the L2 criterion. Available methods include proximal gradient descent (PG) and majorization-minimization (MM).
Usage
L2E_isotonic(
y,
beta,
tau,
method = "MM",
max_iter = 100,
tol = 1e-04,
Show.Time = TRUE
)
Arguments
y |
Response vector |
beta |
Initial vector of regression coefficients |
tau |
Initial precision estimate |
method |
Available methods include PG and MM. MM by default. |
max_iter |
Maximum number of iterations |
tol |
Relative tolerance |
Show.Time |
Report the computing time |
Value
Returns a list object containing the estimates for beta (vector) and tau (scalar), the number of outer block descent iterations until convergence (scalar), and the number of inner iterations per outer iteration for updating beta (vector) and tau or eta (vector)
Examples
set.seed(12345)
n <- 200
tau <- 1
x <- seq(-2.5, 2.5, length.out=n)
f <- x^3
y <- f + (1/tau) * rnorm(n)
## Clean Data
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
## Least Squares method
iso <- isotone::gpava(1:n, y)$x
## MM method
sol_mm <- L2E_isotonic(y, b, tau)
## PG method
sol_pg <- L2E_isotonic(y, b, tau, method='PG')
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, iso, col='blue', lwd=3) ## LS
lines(x, sol_mm$beta, col='red', lwd=3) ## MM
lines(x, sol_pg$beta, col='dark green', lwd=3) ## PG
## Contaminated Data
ix <- 0:9
y[45 + ix] <- 14 + rnorm(10)
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
tau <- 1
b <- y
iso <- isotone::gpava(1:n, y)$x
sol_mm <- L2E_isotonic(y, b, tau)
sol_pg <- L2E_isotonic(y, b, tau, method='PG')
plot(x, y, pch=16, cex.lab=1.5, cex.axis=1.5, cex.sub=1.5, col='gray')
lines(x, f, lwd=3)
lines(x, iso, col='blue', lwd=3) ## LS
lines(x, sol_mm$beta, col='red', lwd=3) ## MM
lines(x, sol_pg$beta, col='dark green', lwd=3) ## PG
[Package L2E version 2.0 Index]