cutoff.edgeworth {L2DensityGoFtest} | R Documentation |
Critical value based on Edgeworth expansion of the size function for the density goodness-of-fit test \hat{S}_n(h)
of Bagkavos, Patil and Wood (2021)
Description
Implements the critical value for the density goodness-of-fit test S.n
, approximating via an Edgeworth expansion the size function of the test statistic S.n
.
Usage
cutoff.edgeworth(xin, dist, kfun, p1, p2, sig.lev)
Arguments
xin |
A vector of data points - the available sample. |
dist |
The null distribution. |
kfun |
The kernel to use in the density estimates used in the bandwidth expression. |
p1 |
Parameter 1 (vector or object) for the null distribution. |
p2 |
Parameter 2 (vector or object) for the null distribution. |
sig.lev |
Significance level of the hypothesis test. |
Details
Implements the critical value for the density goodness-of-fit test S.n
, approximating via an Edgeworth expansion the size function of the test statistic S.n
, given by
l_\alpha = z_\alpha + d_0 \sqrt{h} + d_2(n \sqrt{h})^{-1}
where z_\alpha
is the 1-\alpha
quantile of the normal distribution and
d_0 = d_1 - C_{ H_0}
and
d_j = (z_\alpha^2 - 1)c_j, j=1,2
with
c_1 = \frac{4K^{(3)}(0)\mu_2^3 \nu_3}{3\sigma^3}, \; c_2 = \frac{\mu_3^2K^2(0)}{\sigma^3}, \; \mu_i =\int K^i(x)\,dx, i=1,\dots.
and
C_{H_0} = 2\left (E f_0'( \theta_0) \right )^2 \Delta^{-1}, \; \nu_i = E \left \{f^{i}(x)\right \} = \int f^{i+1}(x)\,dx, i=1,\dots
This critical value is the density function equivalent to the critical value estimate obtained in the closely relatated regression setting in Gao and Gijbels (2008) and is suitable for finite sample implementations of the test.
Value
A scalar, the estimate of the critical value at the given significance level.
Author(s)
Dimitrios Bagkavos
R implementation and documentation: Dimitrios Bagkavos <dimitrios.bagkavos@gmail.com>
References
Gao and Gijbels, Bandwidth selection in nonparametric kernel testing, pp. 1584-1594, JASA (2008)
See Also
cutoff.asymptotic, cutoff.bootstrap