cutoff.asymptotic {L2DensityGoFtest}R Documentation

Asymptoticaly normal critical value for the goodness-of-fit test statistic \hat{S}_n(h) of Bagkavos, Patil and Wood (2021)

Description

Implements an asymptoticaly normal critical value for testing the goodness-of-fit of a parametrically estimated density with the test statistic S.n.

Usage

cutoff.asymptotic(dist,  p1, p2, sig.lev)

Arguments

dist

The null distribution.

p1

Parameter 1 (vector or object) for the null distribution.

p2

Parameter 2 (vector or object) for the null distribution.

sig.lev

Significance level of the hypothesis test.

Details

Implements the asymptotic critical value defined in Remark 1, Bagkavos, Patil and Wood (2021), equal to z_\alpha \sigma_{0, \theta_0} where z_\alpha is the 1-\alpha quantile of the normal distribution and

\sigma_{0, \theta_0}^2 = 2 \left (\int K^2(u)\,du \right ) \left (\int f^2_0(x; \theta_0)\,dx \right ).

Value

A scalar, the estimate of the asymptotic critical value at the given significance level.

Author(s)

Dimitrios Bagkavos

R implementation and documentation: Dimitrios Bagkavos <dimitrios.bagkavos@gmail.com>

References

Bagkavos, Patil and Wood: Nonparametric goodness-of-fit testing for a continuous multivariate parametric model, (2021), under review.

See Also

cutoff.edgeworth, cutoff.bootstrap


[Package L2DensityGoFtest version 0.6.0 Index]