vorob_threshold {KrigInv} | R Documentation |
Calculation of the Vorob'ev threshold
Description
Evaluation of the Vorob'ev threshold given an excursion probability vector. This threshold is such that the volume of the set (x : pn(x) > threshold) is equal to the integral of pn.
Usage
vorob_threshold(pn)
Arguments
pn |
Input vector of arbitrary size containing the excursion probabilities pn(x). |
Details
In this function, all the points x are supposed to be equaly weighted.
Value
a scalar: the Vorob'ev thresold
Author(s)
Clement Chevalier (University of Neuchatel, Switzerland)
References
Chevalier C., Ginsbouger D., Bect J., Molchanov I. (2013) Estimating and quantifying uncertainties on level sets using the Vorob'ev expectation and deviation with gaussian process models mODa 10, Advances in Model-Oriented Design and Analysis, Contributions to Statistics, pp 35-43
Chevalier C. (2013) Fast uncertainty reduction strategies relying on Gaussian process models Ph.D Thesis, University of Bern
See Also
max_vorob_parallel
, vorob_optim_parallel
Examples
#vorob_threshold
set.seed(9)
N <- 20 #number of observations
T <- 80 #threshold
testfun <- branin
#a 20 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)
#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")
## Not run:
###we need to compute some additional arguments:
#integration points, and current kriging means and variances at these points
integcontrol <- list(n.points=50,distrib="sobol")
obj <- integration_design(integcontrol=integcontrol,
lower=c(0,0),upper=c(1,1),model=model,T=T)
integration.points <- obj$integration.points
pred <- predict_nobias_km(object=model,newdata=integration.points,
type="UK",se.compute=TRUE)
pn <- pnorm((pred$mean-T)/pred$sd)
vorob_threshold(pn)
## End(Not run)