predict_nobias_km {KrigInv} | R Documentation |
Kriging predictions
Description
This function is similar to the predict.km function from the DiceKriging package. The only change is the additionnal F.newdata output.
Usage
predict_nobias_km(object, newdata, type = "UK",
se.compute = TRUE, cov.compute = FALSE, low.memory=FALSE,...)
Arguments
object |
A Kriging model of |
newdata |
Vector, matrix or data frame containing the points where to perform predictions. |
type |
Character string corresponding to the kriging family, to be chosen between simple kriging ("SK"), or universal kriging ("UK"). |
se.compute |
Optional boolean. If |
cov.compute |
Optional boolean. If |
low.memory |
Optional boolean. If set to |
... |
No other arguments. |
Value
mean |
kriging mean (including the trend) computed at |
sd |
kriging standard deviation computed at |
cov |
kriging conditional covariance matrix. Not computed if |
lower95 |
|
upper95 |
bounds of the 95 % confidence interval computed at |
c |
an auxiliary matrix, containing all the covariances between newdata and the initial design points. |
Tinv.c |
an auxiliary vector, equal to |
F.newdata |
value of the trend function at |
Warning
Beware that the only consistency check between newdata
and the experimental design is to test whether they have same number of columns. In that case, the columns of newdata
are interpreted in the same order as the initial design.
Author(s)
O. Roustant (Ecole des Mines de St-Etienne, France)
David Ginsbourger (IDIAP Martigny and University of Bern, Switzerland)
References
N.A.C. Cressie (1993), Statistics for spatial data, Wiley series in probability and mathematical statistics.
A.G. Journel and C.J. Huijbregts (1978), Mining Geostatistics, Academic Press, London.
D.G. Krige (1951), A statistical approach to some basic mine valuation problems on the witwatersrand, J. of the Chem., Metal. and Mining Soc. of South Africa, 52 no. 6, 119-139.
J.D. Martin and T.W. Simpson (2005), Use of kriging models to approximate deterministic computer models, AIAA Journal, 43 no. 4, 853-863.
G. Matheron (1963), Principles of geostatistics, Economic Geology, 58, 1246-1266.
G. Matheron (1969), Le krigeage universel, Les Cahiers du Centre de Morphologie Mathematique de Fontainebleau, 1.
J.-S. Park and J. Baek (2001), Efficient computation of maximum likelihood estimators in a spatial linear model with power exponential covariogram, Computer Geosciences, 27 no. 1, 1-7.
C.E. Rasmussen and C.K.I. Williams (2006), Gaussian Processes for Machine Learning, the MIT Press, https://gaussianprocess.org/gpml/
J. Sacks, W.J. Welch, T.J. Mitchell, and H.P. Wynn (1989), Design and analysis of computer experiments, Statistical Science, 4, 409-435.
See Also
Examples
#predict_nobias_km
set.seed(9)
N <- 20 #number of observations
testfun <- branin
#a 20 points initial design
design <- data.frame( matrix(runif(2*N),ncol=2) )
response <- testfun(design)
#km object with matern3_2 covariance
#params estimated by ML from the observations
model <- km(formula=~., design = design,
response = response,covtype="matern3_2")
n.grid <- 100
x.grid <- y.grid <- seq(0,1,length=n.grid)
newdata <- expand.grid(x.grid,y.grid)
pred <- predict_nobias_km(object=model,newdata=newdata,type="UK",se.compute=TRUE)
z.grid1 <- matrix(pred$mean, n.grid, n.grid)
z.grid2 <- matrix(pred$sd, n.grid, n.grid)
par(mfrow=c(1,2))
#plots: contour of the kriging mean and stdev
image(x=x.grid,y=y.grid,z=z.grid1,col=grey.colors(10))
contour(x=x.grid,y=y.grid,z=z.grid1,15,add=TRUE)
points(design, col="black", pch=17, lwd=4,cex=2)
title("Kriging mean")
image(x=x.grid,y=y.grid,z=z.grid2,col=grey.colors(10))
contour(x=x.grid,y=y.grid,z=z.grid2,15,add=TRUE)
points(design, col="black", pch=17, lwd=4,cex=2)
title("Kriging standard deviation")