KoulLrMde {KoulMde} | R Documentation |
Minimum distance estimation in linear regression model.
Description
Estimates the regression coefficients in the model Y=X\beta + \epsilon
.
Usage
KoulLrMde(Y, X, D, b0, IntMeasure, TuningConst = 1.345)
Arguments
Y |
- Vector of response variables in linear regression model. |
X |
- Design matrix of explanatory variables in linear regression model. |
D |
- Weight Matrix. Dimension of D should match that of X. Default value is XA where A=(X'X)^(-1/2). |
b0 |
- Initial value for beta. |
IntMeasure |
- Symmetric and |
TuningConst |
- Used only for Robust measure. |
Value
betahat - Minimum distance estimator of \beta
.
residual - Residuals after minimum distance estimation.
ObjVal - Value of the objective function at minimum distance estimator.
References
[1] Kim, J. (2018). A fast algorithm for the coordinate-wise minimum distance estimation. J. Stat. Comput. Simul., 3: 482 - 497
[2] Kim, J. (2020). Minimum distance estimation in linear regression model with strong mixing errors. Commun. Stat. - Theory Methods., 49(6): 1475 - 1494
[3] Koul, H. L (1985). Minimum distance estimation in linear regression with unknown error distributions. Statist. Probab. Lett., 3: 1-8.
[4] Koul, H. L (1986). Minimum distance estimation and goodness-of-fit tests in first-order autoregression. Ann. Statist., 14 1194-1213.
[5] Koul, H. L (2002). Weighted empirical process in nonlinear dynamic models. Springer, Berlin, Vol. 166
See Also
KoulArMde() and Koul2StageMde()
Examples
####################
n <- 10
p <- 3
X <- matrix(runif(n*p, 0,50), nrow=n, ncol=p) #### Generate n-by-p design matrix X
beta <- c(-2, 0.3, 1.5) #### Generate true beta = (-2, 0.3, 1.5)'
eps <- rnorm(n, 0,1) #### Generate errors from N(0,1)
Y <- X%*%beta + eps
D <- "default" #### Use the default weight matrix
b0 <- solve(t(X)%*%X)%*%(t(X)%*%Y) #### Set initial value for beta
IntMeasure <- "Lebesgue" ##### Define Lebesgue measure
MDEResult <- KoulLrMde(Y,X,D, b0, IntMeasure, TuningConst=1.345)
betahat <- MDEResult$betahat ##### Obtain minimum distance estimator
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function
IntMeasure <- "Degenerate" ##### Define degenerate measure at 0
MDEResult <- KoulLrMde(Y,X,D, b0, IntMeasure, TuningConst=1.345)
betahat <- MDEResult$betahat ##### Obtain minimum distance estimator
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function
IntMeasure <- "Robust" ##### Define "Robust" measure
TuningConst <- 3 ##### Define the tuning constant
MDEResult <- KoulLrMde(Y,X,D, b0, IntMeasure, TuningConst)
betahat <- MDEResult$betahat ##### Obtain minimum distance estimator
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function