KoulArMde {KoulMde} | R Documentation |
Minimum distance estimation in the autoregression model of the known order.
Description
Estimates the autoressive coefficients in the X_t = \rho' Z_t + \xi_t
where Z_t
is the vector of q
observations at times t-1,...,t-q
.
Usage
KoulArMde(X, AR_Order, IntMeasure, TuningConst = 1.345)
Arguments
X |
- Vector of |
AR_Order |
- Order of the autoregression model. |
IntMeasure |
- Symmetric and |
TuningConst |
- Used only for Robust measure. |
Value
rhohat - Minimum distance estimator of \rho
.
residual - Residuals after minimum distance estimation.
ObjVal - Value of the objective function at minimum distance estimator.
References
[1] Kim, J. (2018). A fast algorithm for the coordinate-wise minimum distance estimation. J. Stat. Comput. Simul., 3: 482 - 497
[2] Kim, J. (2020). Minimum distance estimation in linear regression model with strong mixing errors. Commun. Stat. - Theory Methods., 49(6): 1475 - 1494
[3] Koul, H. L (1985). Minimum distance estimation in linear regression with unknown error distributions. Statist. Probab. Lett., 3: 1-8.
[4] Koul, H. L (1986). Minimum distance estimation and goodness-of-fit tests in first-order autoregression. Ann. Statist., 14 1194-1213.
[5] Koul, H. L (2002). Weighted empirical process in nonlinear dynamic models. Springer, Berlin, Vol. 166
See Also
KoulLrMde() and Koul2StageMde()
Examples
##### Generate stationary AR(2) process with 10 observations
n <- 10
q <- 2
rho <- c(-0.2, 0.8) ##### Generate true parameters rho = (-0.2, 0.8)'
eps <- rnorm(n, 0,1) ##### Generate innovations from N(0,1)
X <- rep(0, times=n)
for (i in 1:n){
tempCol <- rep(0, times=q)
for (j in 1:q){
if(i-j<=0){
tempCol[j] <- 0
}else{
tempCol[j] <- X[i-j]
}
}
X[i] <- t(tempCol)%*% rho + eps[i]
}
IntMeasure <- "Lebesgue" ##### Define Lebesgue measure
MDEResult <- KoulArMde(X, q, IntMeasure, TuningConst=1.345)
rhohat <- MDEResult$rhohat ##### Obtain minimum distance estimator
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function
IntMeasure <- "Degenerate" ##### Define degenerate measure at 0
MDEResult <- KoulArMde(X, q, IntMeasure, TuningConst=1.345)
rhohat <- MDEResult$rhohat ##### Obtain minimum distance estimator
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function
IntMeasure <- "Robust" ##### Define "Robust" measure at 0
TuningConst <- 3 ##### Define the tuning constant
MDEResult <- KoulArMde(X, q, IntMeasure, TuningConst)
resid <- MDEResult$residual ##### Obtain residual
objVal <- MDEResult$ObjVal ##### Obtain the value of the objective function