Koul2StageMde {KoulMde} | R Documentation |
Two-stage minimum distance estimation in linear regression model with autoregressive error.
Description
Estimates both regression and autoregressive coefficients in the model Y=X\beta + \epsilon
where \epsilon
is autoregressive process of known order q
Usage
Koul2StageMde(
Y,
X,
D,
b0,
RegIntMeasure,
AR_Order,
ArIntMeasure,
TuningConst = 1.345
)
Arguments
Y |
- Vector of response variables in linear regression model. |
X |
- Design matrix of explanatory variables in linear regression model. |
D |
- Weight Matrix. Dimension of D should match that of X. Default value is XA where A=(X'X)^(-1/2). |
b0 |
- Initial value for beta. |
RegIntMeasure |
- Symmetric and |
AR_Order |
- Order of the autoregressive error. |
ArIntMeasure |
- Symmetric and |
TuningConst |
- Used only for Robust measure. |
Value
MDE1stage - The list of the first stage minimum distance estimation result. It contains betahat1stage, residual1stage, and rho1stage.
betahat1stage - The first stage minimum distance estimators of regression coefficients.
residual1stage - Residuals after the first stage minimum distance estimation.
rho1stage - The first stage minimum distance estimators of autoregressive coefficients of the error.
MDE2stage - The list of the second stage minimum distance estimation result. It contains betahat2stage, residual2stage, and rho2stage.
betahat2stage - The second stage minimum distance estimators of regression coefficients.
residual2stage - Residuals after the second stage minimum distance estimation.
rho2stage - The second stage minimum distance estimators of autoregressive coefficients of the error.
References
[1] Kim, J. (2018). A fast algorithm for the coordinate-wise minimum distance estimation. J. Stat. Comput. Simul., 3: 482 - 497
[2] Kim, J. (2020). Minimum distance estimation in linear regression model with strong mixing errors. Commun. Stat. - Theory Methods., 49(6): 1475 - 1494
[3] Koul, H. L (1985). Minimum distance estimation in linear regression with unknown error distributions. Statist. Probab. Lett., 3: 1-8.
[4] Koul, H. L (1986). Minimum distance estimation and goodness-of-fit tests in first-order autoregression. Ann. Statist., 14 1194-1213.
[5] Koul, H. L (2002). Weighted empirical process in nonlinear dynamic models. Springer, Berlin, Vol. 166
See Also
KoulArMde() and KoulLrMde()
Examples
####################
n <- 10
p <- 3
X <- matrix(runif(n*p, 0,50), nrow=n, ncol=p) #### Generate n-by-p design matrix X
beta <- c(-2, 0.3, 1.5) #### Generate true beta = (-2, 0.3, 1.5)'
rho <- 0.4 #### True rho = 0.4
eps <- vector(length=n)
xi <- rnorm(n, 0,1) #### Generate innovation from N(0,1)
#### Generate autoregressive process of order 1
for(i in 1:n){
if(i==1){eps[i] <- xi[i]}
else{eps[i] <- rho*eps[i-1] + xi[i]}
}
Y <- X%*%beta + eps
#####################
D <- "default" #### Use the default weight matrix
b0 <- solve(t(X)%*%X)%*%(t(X)%*%Y) #### Set initial value for beta
IntMeasure <- "Lebesgue" ##### Define Lebesgue measure
MDEResult <- Koul2StageMde(Y,X, "default", b0, IntMeasure, 1, IntMeasure, TuningConst = 1.345)
MDE1stageResult <- MDEResult[[1]]
MDE2stageResult <- MDEResult[[2]]
beta1 <- MDE1stageResult$betahat1stage
residual1 <- MDE1stageResult$residual1stage
rho1 <- MDE1stageResult$rhohat1stage
beta2 <- MDE2stageResult$betahat2stage
residual2 <- MDE1stageResult$residual2stage
rho2 <- MDE2stageResult$rhohat2stage